Title: Dyke-Davidoff-Masson Syndrome: A Case Report

Author names:
1. Gaurav M. Urs
2. Hitesh R. Doddabele

Degrees:
1. Intern Doctor
2. Third-year medical student

Affiliations: Department of Internal Medicine, Adichunchanagiri Hospital and Research Centre, Nagamangala, Karnataka, India.

About the author: Gaurav M Urs recently graduated from Adichunchanagiri Institute of Medical Sciences, Karnataka, India, and is currently working at Adichunchanagiri Hospital and Research Centre, Karnataka, India as an Intern Doctor. Hitesh R Doddabele is a third-year medical student at Adichunchanagiri Institute of Medical Sciences, Karnataka, India.

Acknowledgment: We are grateful to Dr. Shashikantha Bhat (Head of Department, Internal Medicine, Adichunchanagiri Hospital and Research Centre, Karnataka, India) for his guidance and support in writing the manuscript. The authors also wish to thank Dr. Shivadarshan M (Consultant Radiologist, Adichunchanagiri Hospital and Research Centre, Karnataka, India) for his input on the images. Also, we would like to thank Dr. Tejaswi HL (Associate professor, Department of Anatomy, Adichunchanagiri Institute of Medical Sciences, Karnataka, India) for his guidance on this case report.

Financing: None

Conflict of interest statement by authors: No potential conflict of interests for this research/publication.

Compliance with ethical standards: Informed consent of publication was obtained from the patient’s representative.

Authors Contribution Statement:

<table>
<thead>
<tr>
<th>Contributor Role</th>
<th>Role Definition</th>
<th>Authors 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptualization</td>
<td>Ideas; formulation or evolution of overarching research goals and aims.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Curation</td>
<td>Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal Analysis</td>
<td>Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding Acquisition</td>
<td>Acquisition of the financial support for the project leading to this publication.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Investigation: Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.

Methodology: Development or design of methodology; creation of models

Project Administration: Management and coordination responsibility for the research activity planning and execution.

Resources: Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools.

Software: Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.

Supervision: Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.

Validation: Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs.

Visualization: Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.

Writing – Original Draft Preparation: Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).

Writing – Review & Editing: Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre-or post-publication stages.

Highlights:

- Refractory seizures are not only problematic to manage in terms of medications but also hamper the quality of life of such individuals not restricted to the pathology of the causative factor but also the adverse effects of ASDs.
- The absence of characteristic features of this syndrome such as hemiparesis, mental retardation, facial palsy makes it easier to miss out on the diagnosis of DDMS with seizures being the presenting feature and its rarity of occurrence in our case.
- Early recognition of this syndrome would lead to better management in terms of both therapeutic as well as rehabilitative, thus improving the quality of life of such individuals by preventing intellectual decline.

Manuscript word count: 1738
Abstract word count: 226
Number of Figures and Tables: 2

Personal, Professional, and Institutional Social Network accounts.
- Twitter: @GauravUrs3, @HiteshRamakris2

Discussion Points:
1. Can there be a cause so rare to something as common as status epilepticus?
2. What exactly happens in DDMS?
3. How can we diagnose and manage this syndrome complex that very few have come across?
Corresponding Author’s Email: please replace with the institutional email

Dates
Submission: 09/23/2021
Revisions: 10/19/2021, 11/26/2021
Responses: 10/23/2021, 12/01/2021
Acceptance: 12/02/2021
Publication: 01/19/2021

Editors
Associate Editor/Editor: Francisco J. Bonilla-Escobar
Student Editors: Lourdes Adriana Medina-Gaona, Andrew Thomas
Copyeditor: Adam Urback
Proofreader:
Layout Editor:

Publisher’s Disclosure: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our readers and authors we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ABSTRACT.

Background: Dyke Davidoff Masson syndrome (DDMS) is a neurological syndrome characterized by the presence of convulsions, facial asymmetry due to 7th nerve palsy, contralateral hemiplegia, and reduced intellectual capacity.

The Case: We report a case of DDMS in a 20-year-old male who is a previously known case of generalized epilepsy on medication presenting with status epilepticus and initially managed by anticonvulsants. On admission, the seizures manifested again which required the patient to be sedated with injectable anesthetics and intubated. Clinical examination showed no focal neurological deficits or neurocutaneous markers. Imaging studies showed characteristic features of DDMS which were hemiatrophy of the right cerebrum with calvarial thickening and sinuses showing hyperpneumatization on the same side as hemiatrophy. Previous history of such episodes had been recorded and the patient was kept on strict pharmacotherapy. Failure of adherence to these led to the current presentation. The diagnosis of DDMS was kept and the patient was treated conservatively with anticonvulsants and referred to a higher center for further management.

Conclusion: DDMS being a rare but important cause of refractory epilepsy is easily missed on initial assessment and failure of adequate management leads to higher rates of morbidity and mortality associated with this syndrome. In cases like these with an atypical presentation, a good background in radio imaging, and knowledge of the physical manifestations are required to arrive at its diagnosis.

Key Words: Seizures, Neuroimaging, Anticonvulsants (Source: MeSH-NLM).
INTRODUCTION.
In the year 1993 three researchers Dyke, Davidoff, and Masson came across peculiar radiographic images of cerebral hemiatrophy and compensatory hypertrophy of calvarium and frontal sinuses in nine patients who clinically presented with seizures, hemiparesis facial asymmetry, and learning/developmental disabilities thus forming the typical presentation of this syndrome and named it as Dyke-Davidoff-Masson Syndrome (DDMS).¹ This condition usually results from an insult to the developing brain perinatally, which further leads to the loss of developing neurons compromising the development of the brain either focal in nature or as a whole, leading to the spectrum of clinical features seen.² The major concern is the occurrence of such convulsive episodes for which pharmacotherapy alone is insufficient in most of the cases and surgical management is eventually advised in such refractory cases.³ We are hereby describing the clinical and radiological features of this syndrome in a young adult presenting to us with refractory seizures.

THE CASE.
A 20-year-old male patient presented to our emergency department with sudden onset of involuntary movements of both the limbs, upward gazing of eyes, frothing of the mouth, involuntary micturition, and tongue bite. The patient’s attendants gave a history of 10-12 seizures since the previous night before arrival to the hospital with episodes of loss of consciousness for more than 30 minutes and post-ictal confusion for a period of 45 minutes. His seizure was managed with a dose of Lorazepam (2g) followed by Levetiracetam (1g) intravenously. Blood samples were collected and sent for random blood sugar levels, complete metabolic panel, complete hemogram to rule out the common causes of seizures. After stabilization with lorazepam and levetiracetam, the patient was in a state of post-ictal confusion, and admission to the medical intensive care unit was taken up for monitoring and further investigations to rule out the cause. Further tests for liver and renal functions were conducted.

The patient was a known case of Seizure disorder since the age of 17 with left focal onset seizures in his upper limb generalizing to both upper and lower limbs and is on pharmacotherapy (Sodium valproate 300mg BD, Phenobarbital 60mg BD, Clobazam 10mg BD). The seizure episodes started when the patient was aged 3 and was managed under the above-mentioned antiepileptics usually preceded by neck pain, nausea, and involuntary movements of the right hand, diagnosed as idiopathic generalized epilepsy by the local physician and kept as the diagnosis without further investigations or referral to a higher center. They also gave a history of episodic seizures which were managed by increasing the dosage of Clobazam to 20mg BD instead of regular dosing of 10mg BD. Consanguinity was not seen in the family tree. Uneventful perinatal history was given by the patient’s attenders. There are no similar complaints in the immediate family. The parents noted learning difficulties and took him off from schooling in his first grade. He can speak in his mother tongue fluently. Motor developmental milestones were developed at appropriate ages.

On admission to the medical intensive care unit patient remained stable shortly of an hour and then presented with the second episode of seizures, initially with focal seizures of the left hand with secondary generalization, and was treated with Lorazepam 2g, Levetiracetam 1g, Sodium Valproate 1g, Phenobarbitone 1g and then sedated due to the seizure not being controlled by the above medications with Midazolam infusion at 0.2mg/kg/hr and mechanically ventilated. Mechanical ventilation was continued for the next 4 days, then
weaned off and extubated. On extubation, the patient remained stable and vitals near normal with no new onset of seizure episodes. Blood investigations sent initially showed no significant findings.

The clinical examination of the central nervous system was normal and did not reveal any neurocutaneous lesions. He scored poorly on the Mini-Mental Status Examination (14/30) and with brisk tendon reflexes and flexor plantar response. A magnetic resonance imaging (MRI) of the brain was subsequently done, which revealed right cerebral atrophy with gliotic and encephalomalacic changes along with compensatory thickening of the cranial vault (Figure 1) with enlargement of frontal and hemisphenoid sinuses on the right side with an elevation of the right petrous edge (Figure 2). An Electroencephalogram (EEG) report which was previously performed 3 years ago was obtained, which showed abnormal EEG changes with generalized seizure discharges and diffuse background slowing.

We accordingly kept a diagnosis of DDMS and managed him conservatively with the above antiepileptics and referred him to a higher center for further management upon the patient's attendees' request. The patient's attendees refused surgical intervention at the higher center due to financial constraints and are continuing the anticonvulsants. Informed consent of publication was obtained from the patient's representative.
DISCUSSION.

DDMS, which is a rare but important condition commonly associated with refractory seizures, was first documented by Dyke, Davidoff, and Masson in 1933 when they noted radiographic images in a series of 9 patients with similar presentations. Total and subtotal cortical hemiatrophy is the pathognomonic radiological finding in this syndrome, while sometimes unilateral cerebral atrophy is also noted in the cerebral peduncles, thalamus, pons, cerebellar crossings, and surrounding areas. Neuroimaging on enhancing shows prominent sulcus over the cerebrum, lateral ventricles dilated in certain parts, increase in the CSF spaces, calvarial thickening, osseous hypertrophy on the same side as the hemiatrophy with hyperpneumatization of the frontal and mastoid sinuses, and an elevated calvarium on the temporal side. Both the genders are equally affected in this case and any part of the brain can be equally involved as well, although left-sided involvement and male preponderance have been shown to be more frequently observed in one particular case study. The clinical features of this syndrome are hemiparesis on the same side as hemiatrophy with an upper motor neuron type palsy of the 7th nerve, focal or generalized convulsions, and poor intellect with a delay in the achievement of milestones either occurring alone or in combination based on the side of hemiatrophy.

Refractory epilepsy has many such etiologies, commonly being failure of adherence to antiepileptic drugs and include seizures that are non-epileptic, misdiagnosis, inappropriate use of medications such as inadequate dosing, drug to drug interactions, and lifestyle causes such as alcohol, drug abuse, stress, and sleep deprivation. Identification of the causative etiology is essential in planning its management since refractory seizures are associated with high rates of morbidity and mortality. Out of the variety of tests available to investigate epilepsy, Neuroimaging is the main tool used in its investigation. We came across this rare case of Dyke-Davidoff-Masson syndrome presenting as refractory seizures alone without the other typical features mentioned above.

Of the two types of cerebral hemiatrophy, the infantile variety results from perinatal vascular insult commonly arterial usually involving the middle cerebral artery, cerebral arterial occlusions anteriorly, coarctation of aortic arch or common early neonatal sepsis thus presenting with the symptoms subsequently in the age group when the insult has occurred. The acquired type of DDMS usually results from hypoxic-ischemic encephalopathy, pyrexic seizures of prolonged duration, traumatic insult, neoplastic, infectious etiology, along with hemorrhagic and ischemic causes. The classical MRI changes of this disease, which are hemiatrophy and hyperpneumatization of sinuses, are observed radiographically only if the causative factor has acted upon the developing brain before the age of three.

The differential diagnosis of this presentation seen in our case importantly includes Sturge-Weber syndrome and Rasmussen encephalitis. Also, certain syndromes like Fishman syndrome, Silver-Russell syndrome, and linear nevus syndrome have to be kept in the picture as rare but possible causes. These syndromes are recognized through neuroimaging and clinical correlation. Sturge-Weber syndrome is presented clinically by port-wine nevus on the face, epilepsy, ophtalmic manifestations primarily being increased intraocular pressure, learning difficulties, and stroke-like features occurring frequently. The underlying pathology is due to intracranial vascular anomaly and leptomeningeal angiomatosis and stasis causing the pathognomonic intracranial tram track calcification with laminar cortical necrosis leading to atrophy.
encephalitis, an immune-mediated progressive chronic condition occurring commonly in the younger age group of six to eight years, with the child presenting with intractable focal onset epilepsy and cognitive defects with imaging findings similar to that of hemi cerebral atrophy but no significant calvarial changes. Silver-Russell syndrome is another differential characterized by its unique facial phenotype, poor attainment of physical parameters such as height and bone length, clinodactyly, cerebral hemi hypertrophy without affecting the head circumference, and no deranged mental capacity. Fishman syndrome is a neurocutaneous syndrome occurring rarely which presents with unilateral cranial lipomatosis with ophthalmic lipodermoid, along with seizures characterized by radiological features of cortical calcification and hemiatrophy. The hallmarks of linear nevus syndrome are typically facial nevus, recurrent refractory seizures, growth retardation with mental retardation, and unilateral ventricular dilatation resembling cerebral hemiatrophy.

With the clinical features of cerebral hemiatrophy along with supportive radiological evidence of cerebral hemiatrophy, osseous hypertrophy of the skull, and compensatory hyper-pneumatization of the sinuses, DDMS has to be considered as the cause. Even though our patient had just refractory seizures and learning difficulties as the clinical features, radiographic assistance is the one that aided in the prompt diagnosis of this syndrome. Commonly affecting the pediatric population, this case is of importance since our patient is in his early adulthood. On further history, the patient was seen to have missed the dosing of the antiepileptics leading to the onset of the above scenario, thus being the causative etiology.

Conservative management of DDMS includes rational use of antiepileptic drugs, usually in combination since they do not easily adhere to monotherapy. If seizures are refractory, cerebral hemispherectomy is the available neurosurgical option which ensures the patient is seizure-free in about 85% of the operated cases. Long-term management also includes adjunctive usage of physiotherapy, occupational and speech therapy. At present, management of epilepsy is still limited to monotherapy or adjunct usage of antisiezure drugs as the first-line management. Prompt diagnosis and early adherence to antiepileptics as the medical management of the seizures along with rehabilitation of both neurological and physical activities are also essential.

Conclusion: DDMS usually presents in early childhood or adolescents as refractory seizures requiring lifelong pharmacotherapy with anticonvulsants. Due to its rarity of occurrence, Dyke-Davidoff-Masson Syndrome is commonly missed on initial assessment. The relatively high cost of anticonvulsants, upon the background of low socioeconomic status, personal expenses for treatment, facilitates poor adherence to the drugs and thus broadens the treatment gap. Further studies are necessary to identify the natural course of DDMS especially in the adult population leading to appropriate and economical management.
REFERENCES.

FIGURES AND TABLES.

Figure 1. MRI Showing Right Cerebral Atrophy With Gliotic and Encephalomalacic Changes Along With Compensatory Thickening Of Cranial Vault.
Figure 2. MRI Showing Enlargement Of Frontal And Hemisphenoid Sinuses On The Right Side with Elevation Of The Right Petrous Edge.