Title: Working at a Cancer Research Laboratory as a Medical Student: Experience of an Indian Student Studying Medicine in Russia

Article type: Experience

Author names:
1. Shinjit Mani

Degrees and Affiliations
1. Final-year Medical Student. Kazan State Medical University, Kazan, Russia.

ORCID (Open Researcher and Contributor Identifier):
https://orcid.org/0000-0003-0490-0383

About the author: Shinjit Mani is a final year medical student at Kazan State Medical University, Kazan, Russia for a total six-year program. He was chosen for the “Board of Honor 2019” at the university for his success in his studies and research work. Currently, he is working at the Laboratory of Molecular Oncology at the Department of Pathology of Kazan State Medical University, under the supervision of Prof. Sergei Boichuk.

Corresponding author email: shinjit.mani@gmail.com

Acknowledgment: I thank Dr. Harpreet Singh Bhatti for proofreading the manuscript, and Dr. Swaranjit Singh Bhatti for his valuable guidance.

Financing: This work received no financing.

Conflict of interest statement by authors: The author has no conflict of interest.

Compliance with ethical standards: This paper is compliant with all ethical standards.

Authors Contribution Statement:

<table>
<thead>
<tr>
<th>Contributor Role</th>
<th>Role Definition</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptualization</td>
<td>Ideas; formulation or evolution of overarching research goals and aims.</td>
<td>X</td>
</tr>
<tr>
<td>Data Curation</td>
<td>Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.</td>
<td>X</td>
</tr>
<tr>
<td>Formal Analysis</td>
<td>Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.</td>
<td>X</td>
</tr>
<tr>
<td>Funding Acquisition</td>
<td>Acquisition of the financial support for the project leading to this publication.</td>
<td>X</td>
</tr>
<tr>
<td>Investigation</td>
<td>Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.</td>
<td>X</td>
</tr>
<tr>
<td>Methodology</td>
<td>Development or design of methodology; creation of models</td>
<td>X</td>
</tr>
<tr>
<td>Project Administration</td>
<td>Management and coordination responsibility for the research activity planning and execution.</td>
<td>X</td>
</tr>
<tr>
<td>Resources</td>
<td>Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools.</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.</td>
<td></td>
</tr>
<tr>
<td>Supervision</td>
<td>Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.</td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td>Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs.</td>
<td></td>
</tr>
<tr>
<td>Visualization</td>
<td>Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.</td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).</td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre- or post-publication stages.</td>
<td></td>
</tr>
</tbody>
</table>

Manuscript word count: 1809
Abstract word count: 75
Number of Figures and Tables: one figure

Personal, Professional, and Institutional Social Network accounts.
- Facebook: https://www.facebook.com/shinjit.mani
- Twitter: @shinjit_mani
- Instagram: @shinjit_mani

Discussion Points:
1. Opportunities and difficulties that international medical students face in this field of research
Dates
Submission: 03/03/2022
Revisions: 04/06/2022, 05/02/2022
Responses: 04/10/2022, 05/06/2022
Acceptance: 05/06/2022
Publication: 05/10/2022

Editors
Associate Editor/Editor: Francisco J. Bonilla-Escobar
Student Editors: Shuo-Yan Gau, Manas Pustake
Copyeditor: Kiera Liblik
Proofreader: 
Layout Editor:

Publisher’s Disclosure: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our readers and authors we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ABSTRACT.

Medical education is incomplete without any experience in medical research. In Russia, many international students study medicine, and some of them indulge in research along with their teachers and supervisors in different fields of medicine. Being one of such students, I narrated my experience of working at a cancer research laboratory in a Russian university and discussed the opportunities and difficulties that an international medical student might face while studying medicine and doing research simultaneously.

Key Words: Medical Student, Russia, Biomedical Research
THE EXPERIENCE.

The Beginning of the Journey

Like most universities in Russia, Kazan State Medical University also has students’ science society that gives medical students their first exposure to research. Dry-lab work and clinical research are promoted through this system, as it is cost-effective and much easier to do. Also, the opportunities for dry-lab–based research in the clinical field are much more compared to preclinical fields. On the other hand, in the departments of biochemistry, microbiology, pharmacology, physiology, and pathology majority of work is based on wet-lab and needs more resources. Thus, only a few exceptional students are taken into wet-lab–based work depending on their performance in students’ science society. I was lucky to be one of them.

My journey in cancer research started in November 2018 at the Department of General Pathology when I joined the laboratory of Prof. Sergei Boichuk. He was then our teacher in Pathophysiology and was at that time investigating the mechanism of imatinib resistance in Gastrointestinal Stromal Tumor (GIST) cells. During the introductory session in the laboratory, the first question that came to my mind was “How do these cancers get resistant?” It was a difficult question to answer indeed and to try to find the answer, I knew I had to get involved in the research. Initially, my task was to follow the senior research assistants to learn the protocols and techniques. The most important thing to learn was how to culture and passage the cells in a sterile condition, and how to treat the cells with the drug of choice. Apart from that, I also had to learn the protocols of western blot, flow cytometry, immunofluorescopy, and the use of pipets and various other tools used in the laboratory.

Difficulties to Overcome

Among many difficulties, the language barrier was the most arduous to overcome. I was the only international student working in the laboratory along with a few other Russian students. The best way for me to interact with the rest of the team was to speak and understand the Russian language. It was difficult in the beginning, as the vocabulary that we use in day-to-day life in Russia or during clinical rotations in the hospital is vastly different from what we use in the laboratory. The knowledge of the nuances of the language is also a key to establishing good relations among colleagues. Thus, it took much longer for me to gain good working confidence and establish communication with other members of the team. Nevertheless, all my seniors and colleagues helped me in every possible way to acclimate me to their work culture.

Another issue was balancing my studies with my laboratory work, which was certainly an excruciating task. After attending all classes and lectures, I could spare only two to three hours every day for my laboratory work. On some occasions, I could assist a senior in his work, while on the other occasions I would apprentice whoever was available. It was difficult to synchronize with the work schedule of the senior research assistants as their time was limited and so what should have taken a month to learn, took much longer. Sometimes I had to make a choice, either to study for tomorrow’s topic or to stay in the laboratory to learn the protocols. Often, I choose the latter. This consequently had a bearing on my class rating. However, looking at the possible prospects, it was a price I was willing to pay.

Attending Conferences
Assisting others in their work was my only contribution during the first year. By this time, although I had learned most of the protocols and already knew how to use different equipment, I was still sitting idle. This was due to the preallocation of project assignments and the absence of any new tasks in the laboratory. Thus, I requested my supervisor to allow me to submit the research results to international conferences, for which I already had the necessary experience. After due diligence, we decided to submit the research result at the 12th Annual Meeting of the Korean Society of Medical Oncology. The submission process was easy enough, and the research was accepted for a poster presentation, but arranging to visit the conference proved to be a tedious task. Finally, with financial support from the University, I attended the conference in Seoul, Korea. The conference was held for two days, 7-8 November 2019, from dawn to dusk. I have never attended a conference of this magnitude with so many speakers and participants from all around the world. Among the speakers, the most prominent name was Dr. William G. Kaelin Jr., Nobel Prize Laureate in Physiology or Medicine 2019. His presentation on ‘The VHL tumor suppressor gene: Insights into oxygen sensing and cancer’ provided an in-depth understanding of the oxygen sensing mechanism of cells and its implication in renal cell carcinoma. It was indeed an overwhelming experience to meet so many great minds in just one place.

Soon after my return from Seoul, I decided to send our research data to another conference in Cambridge, UK. It was much smaller in scale and meant for medical students only, so I expected to meet new contacts and get acquainted with other like-minded students. The second UK-Russia Young Medics Conference was held on 6-7th January 2020, and it gave me an insight into the work culture, lifestyle, and social values of the people of the UK. I presented our findings on the combined effect of BGJ398 and Doxorubicin on the Imatinib-resistant GIST. Although doctors and oncologists present there found the results interesting, they also criticized the results because Doxorubicin is not normally used for treating GIST. From the discussion, I understood that all results that are found to be useful preclinically, may not always be translated to the clinical arena. This was a critical lesson for me.

The Pandemic

Upon my return, I reported to my supervisor and asked if I can join any project. About this time, a new project was opened to investigate the resistance mechanism of GIST430 cells, and I was assigned to it. The initial results of the projects were published at the 94th International Student Scientific and Practical Conference at the VII International Youth Scientific Medical Forum "White flowers". But, soon after the project initiated, the lockdown was imposed all over Russia in response to the COVID-19 pandemic. Work in the laboratory was halted and so did our project. Only a few necessary experiments were running, and people at the laboratory were working in small shifts. Students were barred from visiting the University for safety reasons, thus preventing me from working in the laboratory. We could only attend our lectures and classes online and leave the hostel on weekends, that too only for three hours to buy the necessary commodities. Life had come to a standstill for six months. Meanwhile, I started working on a different project which was more statistical and can be done easily at home. This project focused on the correlation of spice intake with colorectal cancer, and by using international databases we found a significant correlation between these two. This almost took four months for me to prepare the paper and was finally published in the International Journal of Medical students.

Failure and Success
It was only in September 2020, once the lockdown had been lifted, that I visited the department to start the pending project. Our lectures were still being conducted online, so I could give more time to my experiments than before. I had to culture the cells, treat them with proper chemical agents, lyse them and conduct Western blotting to find the target proteins. We propose a few hypotheses to describe the resistance mechanism of GIST430 cells. For the next five months, we tested them at multiple attempts in different experiments. However, unfortunately, every single experiment produced negative results, even after ruling out confounders. This back-to-back failure was difficult to deal with; every time the experimental results came out negative, my self-esteem went down. At one point I started doubting myself. I had to accept the harsh truth about research; that failure is more common than success. After getting only negative results for five months, we decided to shut down the project and move on.

Soon after that, I joined another project with a colleague who was working with triple-negative breast cancer (TNBC) at the same laboratory. This was a new beginning for me. We were investigating the activity of a targeted drug named Infigratinib on the TNBC cell line. During this project, time management became a difficult issue. Because I not only had to work on my research and classwork but also had to prepare for the Indian screening exam (FMGE) which is mandatory to pass to get a license to practice in India. This made life even harder, some days I had to leave my room at 8 in the morning only to return at 11 pm after attending classes, lectures, and lab work; then I had to cook, eat, and study for the next day until 2 am only to wake up next morning to repeat the same routine. After almost seven months of rigorous investigation, we finally had some fruitful results. We found that Infigratinib also targets p-glycoproteins in taxol-resistant triple-negative breast cancer cells and synergizes with Paclitaxel, increasing its lethality. Indeed, this finding was a moment of joy for us. Finally, the data from this project got published in March 2022.

Lessons to Learn

Without any doubt, all the hardships that I went through taught me lessons that I could not learn any other way. The first lesson was to be ready to accept any adversities that may come on the way. Learning to accept failure is the key. Secondly, an aspirant must be ambitious, and with the help form an experienced supervisor, this ambition will bear fruit. Thus, having a good supervisor who would support you even in difficult time is crucial. Thirdly, exposure is necessary, and conferences not only allow us to learn about the current advancements in research but also provide us with the necessary networking opportunities. Moreover, one must learn to ask for help when needed, because research is a team effort and without help, one cannot get too far. Lastly, the science and the experimental methods used in the research are difficult and can overwhelm anyone exposed to them for the first time. Thus, one must be resilient and give an ample amount of time to understand it. Those who do tend to stay in the research field for the rest of their life, while others find it difficult and leave. Research is for those who are madly enthused about it. It takes a lifetime to be a scientist; there is a beginning but no end.
REFERENCES.


FIGURES AND TABLES.

Figure 1. Digital poster presentation at KSMO 2019 International Conference, Seoul, Korea.