

- 1 Title: Modified De-Epithelialization Protocol Enhances Short-Term Chondrocyte Survival in Chimeric Tracheal
- 2 Allografts 3 4 Article type: Original Article 5 6 Author names: 7 1. Kevin Xiang Zhou 8 2. Fabio Gava Aoki 9 3. Alba Marin 10 4. Dr. Golnaz Karoubi 11 5. Dr. Siba Haykal 12 6. Dr. Thomas K. Waddell 13 Degrees and Affiliations: Write the degree(s) separated by a comma and put a period before the affiliations. 14 Use the same order of the numbered list at the author names. 15 1. BMSc (Hons.). Schulich School of Medicine and Dentistry, 1151 Richmond St, London, ON N6A 5C1, 16 Canada 17 2. PhD, MASc. Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University 18 Health Network, 101 College St., Toronto, ON M5G 1L7, Canada 19 3. MD. Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health 20 Network, 101 College St., Toronto, ON M5G 1L7, Canada 21 4. PhD. Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, University Health 22 Network, 101 College St., Toronto, ON M5G 1L7, Canada 23 5. MD, PhD, FRCS(C), FACS. Latner Thoracic Surgery Research Laboratories, Division of Thoracic 24 Surgery, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada 25 6. MD, PhD, MSc, FRCSC. Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, 26 University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada 27 ORCID (Open Researcher and Contributor Identifier): Write the ORCID of each author. If they do not have 28 one, please ask them to create it at www.orcid.org 29 https://orcid.org/0000-0003-0332-9947 30 https://orcid.org/0000-0003-3387-5121 31 None available 32 None available 33 https://orcid.org/0000-0002-4247-2810 34 https://orcid.org/0000-0002-3235-9208 35 36
 - About the author: Kevin Xiang Zhou is currently a second-year student at the Schulich School of Medicine &
- 37 Dentistry, Western University. He completed his BMSc (Hons) at Western University in the department of
- 38 Pathology and Laboratory Medicine.
- 39 Corresponding author email: kzhou54@uwo.ca
- 40 Acknowledgment: None applicable

- 1 Financing: This research was undertaken thanks in part to funding from the Canada First Research Excellence 2 Fund and the IMS SURP program. 3 Conflict of interest statement by authors: The authors have no actual or potential conflicts of interest in 4 5 relation to this research study 6 Compliance with ethical standards: All animals received humane care in compliance with the "Principles of 7 Laboratory Animal Care" formulated by the National Society for Medical Research and the "Guide for the Care 8 of Laboratory Animals" published by the National Institutes of Health. The study was approved by the Animal 9 Care Committee of the Toronto General Research Institute. 10
- 11 Authors Contribution Statement: Fill the following table with all the authors contribution using an X. Add as
- 12 many columns as needed based on the number of authors of the manuscript. The numbers under authors
- 13 indicate the order described above in author names.

	Role Definition		Authors				
Contributor Role			2	3	4	5	6
Conceptualization	Ideas; formulation or evolution of overarching research goals and aims.	X.	Х		Х	Х	Х
Data Curation	Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.	X					
Formal Analysis	Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.	Х					
Funding Acquisition	Acquisition of the financial support for the project leading to this publication.				Х		Х
Investigation	Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.	Х	Х	Х			
Methodology	Development or design of methodology; creation of models	Х	Х				
Project Administration	Management and coordination responsibility for the research activity planning and execution.	Х	Х		Х	Х	Х
Resources	Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools.	Х					
Software	Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.	Х					
Supervision	Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.		Х	Х	Х	Х	Х
Validation	Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs.	Х	Х				
Visualization	Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.	Х					
Writing – Original Draft Preparation	Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).	Х					
Writing – Review & Editing	Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre- or post-publication stages.	Х					

14

15 Manuscript word count: 2811

16 Abstract word count: 245

- 17 Number of Figures and Tables: 14
- 18 19

20

21

22

Personal, Professional, and Institutional Social Network accounts.

- Facebook: https://www.facebook.com/SchulichMedicineAndDentistry/
- Twitter: https://twitter.com/kevinxzhou
- Instagram: https://www.instagram.com/kxzdds/
- Linkedin: https://www.linkedin.com/in/kevinxzhou/
- 23 24

- 1 Discussion Points: For social media. These must be 280 characters with spaces or less, and may take the 2 form of questions or statements. Our Social Networks specialist will select one or create another one based on 3 these points. 4 1. We propose a new de-epithelialization protocol that adequately removes epithelial, mucosal, and 5 submucosal cells while maintaining a greater proportion of viable chondrocytes. 6 2. The new protocol showed a significant (p < 0.05) increase in chondrocyte viability up to four days after 7 de-ep when compared to the original protocol 8 3. While not without limitations, our new protocol may be used to engineer chimeric tracheal allografts 9 without the need for cartilage regeneration. 10 11 Dates
- 12 Submission: 03/12/2022
- 13 Revisions: 4/27/2022, 11/28/2022
- 14 Responses: 6/03/2022, 12/29/2022
- 15 Acceptance: 1/11/2023
- 16 Publication: 03/08/2023

17

- 18 Editors
- 19 Associate Editor/Editor: Francisco J. Bonilla-Escobar
- 20 Student Editors: Muhammad Romail Manan, Richard Christian Suteja & Kiera Liblik
- 21 Copyeditor:
- 22 Proofreader:
- 23 Layout Editor:
- 24

Publisher's Disclosure: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our readers and authors we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 30 31

International Journal of MEDICAL STUDENTS

1 ABSTRACT.

- Background: Tracheal transplantation is indicated in cases where injury exceeds 50% of the organ in adults and
 30% in children. However, transplantation is not yet considered a viable treatment option partly due to high
 mortality and morbidity associated with graft rejection. Recently, decellularization (decell) has been explored as
- a technique for creating bioengineered tracheal grafts. However, risk of post-operative stenosis increases due
 to the death of chondrocytes, which are critical to maintain the biochemical and mechanical integrity of tracheal
- to the death of chondrocytes, which are critical to maintain the biochemical and mechanical integrity of tracheal
 cartilage. In this project, we propose a new de-epithelialization protocol that adequately removes epithelial,
 mucosal, and submucosal cells while maintaining a greater proportion of viable chondrocytes.
- 9 Methods: The trachea of adult male outbred Yorkshire pigs were extracted, decontaminated, and decellularized 10 according to the original and new protocols before incubation at 37 °C in DMEM for 10 days. Chondrocyte 11 viability was quantified immediately post-decellularization and on days 1, 4, 7, and 10. Histology was performed
- 12 pre-decellularization, post-decellularization, and post-incubation.

- Results: The new protocol showed a significant (p < 0.05) increase in chondrocyte viability up to four days after de-ep when compared to the original protocol. We also found that the new protocol preserves ECM composition to a similar degree as the original protocol. When scaffolds created using the new protocol were reepithelialized, cell growth curves were near identical to published data from the original protocol.
- Conclusion: While not without limitations, our new protocol may be used to engineer chimeric tracheal allograftswithout the need for cartilage regeneration.
- 19

Key Words: tissue engineering, decellularization, allograft, trachea, bioreactor, regenerative medicine, chondrocyte, stem cell, graft, transplantation, transplant, surgery, bioengineering, stenosis, cartilage, viability, cell viability (Source: MeSH-NLM).

1 INTRODUCTION.

2 Tracheal transplantation is indicated in cases where injury exceeds 50% of the organ in adults and 30% 3 in children.¹ However, tracheal replacement therapy is currently considered a high-risk procedure, mostly 4 offered as a treatment option on compassionate use cases. A major reason behind the relatively high rate of 5 complications is the plethora of immunological compatibility issues created by orthotopically transplanting a 6 donor organ. A possible solution to this problem may be found in tissue engineering-based approaches for 7 whole-trachea regeneration. Recently, significant progress has been made in engineering bioartificial organs 8 de novo from pluripotent stem cells and acellular extracellular matrix (ECM) scaffolds.²⁻⁵ Somatic cells have 9 been differentiated into functional lung epithelial cells after transformation into induced pluripotency.⁶ Also, stem 10 cell-seeded tracheal grafts from cadaveric donors have been transplanted into patients with end-stage airway 11 diseases.³ Despite these milestones, recellularized tracheal allografts still demonstrate increased risk of 12 stenosis, resulting in post-operative complications.^{2,3,7}

13 Decellularization (decell) of donor trachea is a relatively well-studied technique for creating natural 14 scaffolds for whole-trachea regeneration.^{8–14} One such decell approach involves the use of detergents to 15 remove donor cells from a cadaveric trachea, leaving behind the ECM scaffold.^{10,15,16} Recipient-derived induced 16 pluripotent stem cells (iPSCs) may then be seeded onto such scaffold, reconstituting the respiratory epithelium.³ 17 The benefits of this approach are twofold. Firstly, risk of graft rejection is reduced because the immunogenic 18 donor tracheal epithelium and submucosa are removed and replaced with autologous cells.^{7,9,17–19} Secondly, 19 the use of a native biological scaffold rather than synthetic materials preserves the important tissue architecture 20 and ultrastructure, which allows us to better mimic the cellular niche later during scaffold seeding.¹⁶ However, the full thickness decell protocols currently used are harmful to chondrocytes, leading to deficiencies in the 21 22 biochemical and mechanical integrity of hyaline cartilage.^{13,16,20} This may increase risk of post-operative 23 stenosis and other complications upon implantation.²¹ To address this issue, the Waddell lab uses a de-24 epithelialization (de-ep) technique pioneered by Aoki et al. to remove only the immunogenic epithelium while 25 maintaining chondrocyte viability.^{16,22} This de-ep can be followed by re-ep using autologous cells to produce 26 chimeric tracheal allografts.

27 Despite these advances, the original de-ep protocol is suboptimal because it results in a relatively low 28 chondrocyte survival (68.6 ± 7.3%).¹⁶ A new de-ep protocol has recently been developed based on the 29 postulated chemical and osmotic effects of various decellularization fluids on chondrocytes. This protocol is 30 believed to provide milder de-ep conditions that may increase chondrocyte survival while providing similar 31 removal of epithelial cells. When designing this new protocol, we made the following hypotheses: 1) Removal 32 of the standard 40 min ddH₂O wash cycle will decrease osmotic stress on SDS-perforated cells, and 2) Using 33 decreasing concentrations of SDS rather than a static concentration will remove greater amounts of residual 34 SDS in submucosal tissue, protecting cartilage. An initial high concentration (1%) is required for decellularizing 35 epithelium and mucosa, after which lower concentrations (0.1%, 0.01%) are more appropriate for minimizing 36 damage to cartilage. This study intends to serve as a proof-of-concept to demonstrate that a modified de-ep 37 protocol can allow for the removal of immunogenic tissue (epithelium, mucosa, submucosa, and perichondrium) 38 while preserving more of the chondrocyte population. The objectives of this study are to: 1) evaluate 39 chondrocyte viability in porcine trachea after the new de-ep protocol, 2) validate the new protocol's ability to 40 preserve ECM biochemical composition, and 3) validate the new protocol's ability to support epithelial cell 41 attachment and viability during re-ep. We hypothesize that the new protocol will produce de-epithelialized

1 scaffolds with improved chondrocyte viability while demonstrating similar biochemical composition and re-2 epithelialization performance compared to the current protocol.

4 METHODS.

3

5 Tracheal extraction

6 Adult male outbred Yorkshire pigs (30-40 kg) (n = 6) were used as donor animals due to the 7 physiological similarity of their cardiopulmonary system to that of humans. After anesthesia by isoflurane 8 administration, a median incision of the neck was made to expose the larynx and upper trachea. Next, a median 9 sternotomy was performed to open the chest wall and provide access to the lower trachea. Using Mayo scissors, 10 the trachea was bisected just below the cricothyroid membrane and lifted away from the esophagus. 11 Surrounding connective tissue was dissected away using curved Mayo scissors. To detach the trachea, the left 12 and right main bronchus were bisected just below the carina. The extracted trachea was immediately placed in 13 decontamination solution at 0 °C until transported out of the operating room. The decontamination solution 14 contained Hank's balanced salt solution (HBSS) supplemented with 2% (w/v) bovine serum albumin (BSA), 15 fluconazole (4 µg/mL), colistimethate (5 µg/mL), imipenem/cilastatin (25 µg/mL), ceftazidime (154 µg/mL), 16 penicillin (200 U/mL), streptomycin (200 µg/mL), amphotericin B (2.5 µg/mL) and gentamicin (50 µg/mL). The 17 tracheas were subsequently incubated at room temperature on a rocking platform (30rpm) for 2 hrs. After this 18 incubation, the decontamination solution was replaced with fresh solution, and luminal mucus was scraped off 19 using a micro-tapered stainless-steel spatula. The tracheas were incubated at 4 °C overnight until de-ep was 20 performed the next morning.

All animals received humane care in compliance with the "Principles of Laboratory Animal Care" formulated by the National Society for Medical Research and the "Guide for the Care of Laboratory Animals" published by the National Institutes of Health. The study was approved by the Animal Care Committee of the Toronto General Research Institute.

25

26 De-epithelialization and incubation

27 The following solutions were prepared under sterile conditions and adjusted to a pH of 7.4: 1%, 0.1%, 28 and 0.01% sodium dodecyl sulfate (SDS); 1% triton X-100; Dulbecco's phosphate buffered saline (DPBS). A 29 perfusion system was constructed using PVC tubing and 4-way Luer connection stopcocks as illustrated in 30 figure 1 for the original de-ep protocol and figure 2 for the new de-ep protocol. A rotating perfusion bioreactor 31 was used, modified from Haykal et al. Using three 2/0 silk sutures, the trachea was anastomosed to the 32 bioreactor with its proximal end facing the inlet of the chamber (figure 3). De-ep was performed according to 33 the original, new, and control protocols outlined in tables 1-3. Following de-ep, the proximal and distal ends of 34 the trachea were trimmed such that only the portions exposed to the decellularization media were used for the 35 10-day subsequent incubation. The tracheal segments were then placed in decontamination solution for 48 hrs 36 at 4 °C on a rocking platform (30 rpm). Finally, the tracheae were incubated at 47 °C with 5% CO₂ in a 250 mL 37 Erlenmeyer flask fitted with a 20-micron filter allowing for gas exchange. The media used was Dulbecco's 38 Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS), fluconazole (4 µg/mL), 39 colistimethate (5 µg/mL), imipenem/cilastatin (25 µg/mL), ceftazidime (154 µg/mL), penicillin (200 µg/mL), 40 streptomycin (200 µg/mL), amphotericin B (2.5 µg/mL) and gentamicin (50 µg/mL). Media was changed every 41 48 hr.

To accurately compare the two de-ep protocols being tested, two control groups were employed. The first control was a decontaminated native trachea that immediately underwent static incubation for ten days without any de-ep procedure. The second control was exposed to the same conditions as the trachea that underwent the new protocol, except with DPBS replacing all steps that required SDS **(table 3)**. Three biological replicates (n = 3) each were performed for the original protocol, the new protocol, and the two control groups.

7 Histological analysis

8 Histological samples were taken from the trachea before de-ep; after de-ep; and after incubation (figure
9 4). Specimens were fixed with 4% paraformaldehyde for 24 hrs and processed with an automated vacuum
10 tissue processor (Leica). Tissue was sectioned into 5 µm slices and stained with hematoxylin and eosin (H&E),
11 Masson's trichrome, Verhoeff's elastin, and Alcian blue.

12

6

13 Chondrocyte viability staining

14 Chondrocyte viability was quantified immediately after de-ep and on days 1, 4, 7, and 10 (figure 4) 15 using a live/dead assay according to manufacturer instructions (ThermoFisher).

16

17 Quantification of chondrocyte viability

2-3 rings were obtained from each trachea for a membrane integrity-based viability assay. The mucosa and submucosa were dissected away from the cartilage using fine forceps. The cartilage ring was opened and manually cut in cross section into thin (<1 mm) slices. An ethidium homodimer assay (ThermoFisher) was performed as per manufacturer directions. The slices were imaged under confocal microscopy at 20x magnification. Images were then examined manually by a blinded experimenter. Portions of the image containing viable chondrocytes were circumscribed and the area calculated. The percentage viability of an image was calculated through the following formula:

25

% chondrocyte viability =
$$\frac{Area \ of \ viable \ chondrocytes}{Total \ cartilage \ area} \times 100\%$$

26 Three technical replicates were performed per trachea.

27

28 Re-epithelialization

The de-ep bioreactor circuitry from Haykal *et al.* was modified to include media reservoirs for oxygenation, in addition to syringe ports for media changes and sample collection. A 1 mL suspension of BEAS-2B human bronchial epithelial cells (~1×10⁶ cells/cm²) was injected into the lumen. Cells were allowed to adhere for 2 hrs under bidirectional flow at a rate of 1.5 mL/min. After the initial 2 hrs, we started unidirectional perfusion of the lumen at the same rate for seven days. During re-ep, media in the luminal circuit (30 mL) was changed every 24 hrs and media in the outer circuit (250 mL) was changed every 48 hrs.

35

36 Cell proliferation activity assay

Cell proliferation during re-ep was measured using a resazurin-based cell viability assay as per manufacturer instructions (PrestoBlue®, Invitrogen). Briefly, a 20 mL solution of 1:20 (v/v) PrestoBlue/DMEM + 10% FBS was prepared. Three 0.5 mL volumes were separated for use as a negative control. The remaining 18.5 mL of reagent was injected into the luminal perfusion circuit of the bioreactor and allowed to circulate for 1

hr. Afterwards, the PrestoBlue solution was aspirated out of the luminal circuit and aliquoted into three 0.5 mL replicates in a 24-well plate for fluorescence analysis at 560 nm (Cytation[™] 5, BioTek Instruments).

4 Statistical analysis

5 A 2-way analysis of variance (ANOVA) was used to determine statistically significant data ($p \le 0.05$), 6 with Tukey's *post hoc* multiple comparisons test. Values in figures are presented as means with standard 7 deviations (SD).

8

1

2

3

9 **RESULTS**.

10 Quantification of chondrocyte viability

11 There exists an overall negative correlation between days since de-ep and percentage chondrocyte 12 viability (figure 5). Both the original and new protocols significantly reduce viability compared to the two negative 13 controls. However, the new protocol provides significantly improved viability compared to the original protocol 14 in the first four days, after which there is no detectable difference. The most marked improvement in chondrocyte 15 viability occurs on day 4 (61.3±10.8% vs 40.7±5.7%), yet the benefit of the new protocol towards chondrocytes 16 is seen as early as immediately after de-ep on day -2 (78.1±4.7% vs 61.5±10.7%). In other words, long-term 17 chondrocyte survival remains unchanged. Qualitative inspection of live/dead staining reveals the most 18 chondrocyte death at the luminal surface of each cartilage ring (figure 6). There appears to be a smaller 19 "wavefront" of chondrocyte death in the new protocol compared to the current protocol. The average 20 chondrocyte viability of two replicates (n=2) after a 7-day re-ep was 63%.

21

22 Histological analysis

In the native trachea control, H&E staining showed the expected pseudostratified columnar epithelium with cilia and goblet cells (figure 7). In both the original and new de-ep protocols, H&E showed a denuded epithelium, with no residual cellular material. No nuclei or cytosolic elements were found in the epithelium. However, both protocols resulted in some nuclei remaining in the deep submucosal regions. Residual acinar gland cells were also visible in both protocols. The hyaline cartilage appears morphologically unchanged.

Masson's trichrome stain showed good collagen preservation throughout the ECM in both the original and new protocols (figure 8). Keratin fibers in the deep submucosa appear better preserved in the new protocol. Verhoeff's elastin stain showed good preservation of elastin fibers in the mucosa and submucosa of both the original and new de-ep protocols (figure 9). Alcian blue stain showed good preservation of acidic polysaccharides such as glycosaminoglycans in cartilage, in both the original and new protocols (figure 10).

- 33
- 34 Cell proliferation activity assay

When the new protocol's re-ep cell proliferation curve is compared with that of the original protocol from Aoki *et al.*, there is similarity in the rate that fluorescence increases **(figure 11)**. The difference between the two growth curves is nonsignificant as indicated by a multiple t test (false discovery rate approach). Although not a focus of this study, chondrocyte viability after the 7-day re-ep with BEAS-2B was evaluated with two tracheae (n=2). The average chondrocyte viability was 63%.

- 40
- 41
- 42

1 DISCUSSION.

2 It has been demonstrated in previous literature that sodium dodecyl sulfate (SDS) reduces cell viability 3 by acting as an anionic detergent, perforating the cell membrane and causing osmotic lysis.^{10,11,21} The original 4 protocol contains a 3 hr 1% sodium dodecyl sulfate (SDS) wash that can leave residual detergent trapped in 5 tissue, thus causing ongoing damage after the protocol is terminated. Furthermore, the original protocol includes 6 a 30 min ddH₂O wash that can cause further chondrocyte death via osmotic imbalance leading to cytolysis. Our 7 new protocol made two changes to the original protocol: 1) the 3 hr SDS cycle has been replaced with three 1 8 hr cycles at decreasing SDS concentrations (1%, 0.1%, 0.01%), and 2) The 30 min ddH₂O wash has been 9 removed. It is believed that the first change limits deep penetration of residual SDS into tissue, while the second 10 change reduces cytolysis of chondrocytes. In other words, this new protocol was designed to provide milder de-11 ep conditions that increase chondrocyte survival while providing similar removal of epithelial cells. Both negative 12 controls (native trachea and DPBS-only de-ep trachea) showed close to 90% viability. Therefore, it seems that 13 SDS retention in the ECM is a major contributor to chondrocyte death after de-ep, overshadowing the cytolytic 14 effect of the ddH₂O wash and other potential minor contributors. Attempts at quantifying the amount of residual 15 SDS in de-epithelialized tissues using a methylene blue assay were unsuccessful. Future studies should 16 investigate the relationship between residual SDS levels and chondrocyte viability. The short-term nature of the 17 improvement in chondrocyte viability observed in this study was likely due to an initial reduction in residual SDS 18 concentration in submucosal tissues, followed by eventual permeation of the SDS through submucosa and into 19 cartilage due to passive diffusion. Confocal images of the cell viability assay show a clear delineation between 20 calcein-AM (live) cells and ethidium homodimer-1 (dead cells), suggesting a progressive "wavefront" of cell 21 death that is consistent with diffusion of residual SDS. Confirmation of this theory is required, although 22 preventing the diffusion of SDS through submucosal tissue would be difficult or impractical to accomplish in any 23 de-ep protocol.

24 Examination of H&E slides shows that both protocols were extremely efficient at denuding the 25 epithelium. However, neither protocol appears to sufficiently decellularize acinar glands. Furthermore, the new 26 protocol seems to be less efficient at decellularizing deep submucosal layers. This result was expected since 27 our new protocol uses decreasing concentrations of SDS and is less aggressive overall compared to the original 28 protocol, among others.^{23,24} Therefore, with the current detergent-based methods of de-ep, the goal of 29 selectively preserving chondrocyte viability seems to depend on the careful titration of SDS concentrations, 30 walking a fine balance between over- and under-decellularization. Our study shows that the new protocol 31 sacrifices decellularization performance in return for better chondrocyte survival.

Previous studies have shown that decellularization cycles can reduce several ECM components that are critical to structural integrity, including elastin, collagen, and glycosaminoglycans.^{16,24,25} Qualitative histological analysis demonstrated that our new protocol is not any more damaging to ECM components than the original protocol. Elastin, collagen, and glycosaminoglycans were found to be preserved after de-ep to a similar degree as with the original protocol. Tracheal compliance and viscoelasticity were not tested because previous studies by Aoki *et al.* have confirmed no difference in these mechanical properties after the more aggressive original de-ep protocol.¹⁶

The cellular proliferation assay suggests that the new protocol has no negative effects on metabolism and growth of the BEAS-2B cells used for re-ep. This suggests that ECM scaffolds created using the new de-

ep protocol can support epithelial cell attachment and viability during re-ep, allowing for the creation of chimeric
 allografts.

3 This proof-of-concept study is not without limitations. To longitudinally measure chondrocyte survival, 4 we incubated the de-epithelialized trachea in static Dulbecco's Modified Eagle Medium (DMEM) to simulate 5 implantation of the grafts. This does not fully recapitulate the complex cell-environment interactions present in 6 vivo. Therefore, conclusions regarding chondrocyte viability will need to be validated in a bioreactor environment 7 that simulates nutrient perfusion, hydrodynamic stimuli, and mechanical stimuli.^{26,27} The current study did 8 evaluate chondrocyte viability of de-epithelialized trachea after a 7-day re-ep in a double-chamber bioreactor, 9 yielding a percentage viability of 63% over 7-days. This result is promising given previous studies demonstrating 10 that a 50% chondrocyte viability was associated with successful tracheal transplantation in dogs, with no lethal 11 stenosis.²⁸ However, future studies should be conducted with a larger number of replicates.

In conclusion, we introduce a new de-ep protocol with improved short-term chondrocyte viability. The results of this study have indicated that improvements in the protocol can still be made. However, the data presented sheds light on the potential mechanism of chondrocyte death during and after de-ep.

- 16 **REFERENCES.**
- Etienne H, Fabre D, Gomez Caro A, Kolb F, Mussot S, Mercier O, et al. Tracheal replacement. Eur Respir
 J. 2018 Feb;51(2):1702211.
- Elliott MJ, Butler CR, Varanou-Jenkins A, Partington L, Carvalho C, Samuel E, et al. Tracheal
 Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine. Stem Cells Transl Med. 2017 Jun 1;6(6):1458–64.
- Haykal S, Salna M, Waddell TK, Hofer SO. Advances in Tracheal Reconstruction: Plast Reconstr Surg Glob Open. 2014 Jul;2(7):e178.
- Wang Y, Bao J, Wu Q, Zhou Y, Li Y, Wu X, et al. Method for perfusion decellularization of porcine whole
 liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation.
 2015 Jan;22(1):48–61.
- Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev. 2020;161–162:90–109.
- Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, et al. Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs. Cell Stem Cell. 2012 Apr;10(4):385–97.
- Liu Y, Nakamura T, Sekine T, Matsumoto K, Ueda H, Yoshitani M, et al. New Type of Tracheal Bioartificial Organ Treated with Detergent: Maintaining Cartilage Viability Is Necessary for Successful Immunosuppressant Free Allotransplantation: ASAIO J. 2002 Jan;48(1):21–5.
- Conconi MT, Coppi PD, Liddo RD, Vigolo S, Zanon GF, Parnigotto PP, et al. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int. 2005 Jun;18(6):727–34.
- Jungebluth P, Go T, Asnaghi A, Bellini S, Martorell J, Calore C, et al. Structural and morphologic
 evaluation of a novel detergent–enzymatic tissue-engineered tracheal tubular matrix. J Thorac
 Cardiovasc Surg. 2009 Sep;138(3):586–93.
- 41 10. Gilbert TW. Strategies for tissue and organ decellularization. J Cell Biochem. 2012 Jul;113(7):2217–22.
- 42 11. Gilbert T, Sellaro T, Badylak S. Decellularization of tissues and organs. Biomaterials. 2006 Mar
 43 7;S0142961206001682.

- 12. Weymann A, Patil NP, Sabashnikov A, Korkmaz S, Li S, Soos P, et al. Perfusion-Decellularization of 2 3 Porcine Lung and Trachea for Respiratory Bioengineering: Bioartificial Lungs and Tracheae. Artif Organs. 2015 Dec;39(12):1024-32.
- 4 5 13. Hung S-H, Su C-H, Lin S-E, Tseng H. Preliminary experiences in trachea scaffold tissue engineering with segmental organ decellularization: Segmental Trachea Decellularization Tissue Engineering. The 6 Laryngoscope. 2016 Nov;126(11):2520-7.
- 7 14. Hung S-H, Su C-H, Lee F-P, Tseng H. Larynx Decellularization: Combining Freeze-Drying and Sonication 8 as an Effective Method. J Voice. 2013 May;27(3):289-94.
- 9 15. Cebotari S, Tudorache I, Jaekel T, Hilfiker A, Dorfman S, Ternes W, et al. Detergent Decellularization of 10 Heart Valves for Tissue Engineering: Toxicological Effects of Residual Detergents on Human 11 Endothelial Cells. Artif Organs. 2010 Mar;34(3):206-10.
- 12 16. Aoki FG, Varma R, Marin-Araujo AE, Lee H, Soleas JP, Li AH, et al. De-epithelialization of porcine 13 tracheal allografts as an approach for tracheal tissue engineering. Sci Rep. 2019 Dec;9(1):12034.
- 14 17. Zang M, Zhang Q, Chang EI, Mathur AB, Yu P. Decellularized Tracheal Matrix Scaffold for Tracheal 15 Tissue Engineering: In Vivo Host Response. Plast Reconstr Surg. 2013 Oct;132(4):549e-59e.
- 16 18. Liu Y, Nakamura T, Yamamoto Y, Matsumoto K, Sekine T, Ueda H, et al. Immunosuppressant-free 17 allotransplantation of the trachea. J Thorac Cardiovasc Surg. 2000 Jul;120(1):108-14.
- 18 19. Liu Y, Nakamura T, Yamamoto Y, Matsumoto K, Sekine T, Ueda H, et al. A New Tracheal Bioartificial 19 Organ: Evaluation of a Tracheal Allograft with Minimal Antigenicity after Treatment by Detergent: ASAIO 20 J. 2000 Sep;46(5):536-9.
- 21 20. Remlinger NT, Czajka CA, Juhas ME, Vorp DA, Stolz DB, Badylak SF, et al. Hydrated xenogeneic 22 decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials. 2010 23 May;31(13):3520-6.
- 24 21. Gilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Res Int. 2017;2017:1-13. 25
- 26 22. Marin-Araujo AE, Haykal S, Karoubi G. Bioreactor-Based De-epithelialization of Long-Segment Tracheal 27 Grafts. In New York, NY: Springer US; p. 1–16. Available from: https://doi.org/10.1007/7651_2021_431
- 28 23. Haykal S, Zhou Y, Marcus P, Salna M, Machuca T, Hofer SOP, et al. The effect of decellularization of 29 tracheal allografts on leukocyte infiltration and of recellularization on regulatory T cell recruitment. 30 Biomaterials. 2013 Jul;34(23):5821-32.
- 31 24. Haykal S, Soleas JP, Salna M, Hofer SOP, Waddell TK. Evaluation of the Structural Integrity and 32 Extracellular Matrix Components of Tracheal Allografts Following Cyclical Decellularization Techniques: 33 Comparison of Three Protocols. Tissue Eng Part C Methods. 2012 Aug;18(8):614-23.
- 34 25. Partington L, Mordan NJ, Mason C, Knowles JC, Kim H-W, Lowdell MW, et al. Biochemical changes 35 caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomater. 36 2013 Feb;9(2):5251-61.
- 37 26. Asnaghi MA, Jungebluth P, Raimondi MT, Dickinson SC, Rees LEN, Go T, et al. A double-chamber 38 rotating bioreactor for the development of tissue-engineered hollow organs: From concept to clinical trial. 39 Biomaterials. 2009 Oct;30(29):5260-9.
- 40 27. Lee H, Marin-Araujo AE, Aoki FG, Haykal S, Waddell TK, Amon CH, et al. Computational fluid dynamics 41 for enhanced tracheal bioreactor design and long-segment graft recellularization. Sci Rep. 2021 42 Dec;11(1):1187.

International Journal of MEDICAL STUDENTS

 Lu T, Huang Y, Qiao Y, Zhang Y, Liu Y. Evaluation of changes in cartilage viability in detergent-treated tracheal grafts for immunosuppressant-free allotransplantation in dogs. Eur J Cardiothorac Surg. 2018 Mar 1;53(3):672–9.

4

1 2 3

2

1 FIGURES AND TABLES.

- 3 **Figure 1.** The perfusion circuitry designed for the original de-ep protocol. Order of perfusion is numbered from
- 4 1-4 and corresponds to the solutions in table 1.

- 1 **Figure 2.** The perfusion circuitry designed for the new de-ep protocol. Order of perfusion is numbered from 1-5
- 2 and corresponds to the solutions in table 2.

*

1 **Figure 3.** Appearance of the bioreactor with lid removed. Trachea is visible, surrounded by DMEM.

ses.

1

, Ce

- 1 Figure 5. Chondrocyte viability following de-epithelialization and 10-day incubation in static media. Statistically
- 2 significant differences as determined by a two-way ANOVA with Tukey's post hoc multiple comparisons test are
- 3 indicated. P-values given as: <0.0332 = *, <0.0021 = **, <0.0002 = ***, <0.0001 = ****

- 1 **Figure 6.** Chondrocyte viability in new protocol, original/current protocol, and a native trachea control on day
- 2 10 of static incubation. Confocal microscopy images depicting calcein-AM for live (green) and ethidium
- 3 homodimer-1 for dead (red) cells in cross-sections of cartilage rings (marked as the area within the white dotted
- 4 line).

5

- 1 Figure 7. H&E of native trachea; trachea processed with the original/current de-ep protocol; and trachea
- 2

processed with the new de-ep protocol. The lumen (L), epithelium (E), submucosa (SM), acinar glands (AG) and hyaline cartilage (HC) are labelled.

3

L L 3. 10 Е SM SM Nº ST SM AG AG HC HC HC Native Trachea Current Protocol New Protocol 200 µm 200 µm 200 µm

International Journal of MEDICAL STUDENTS

- 1 **Figure 8.** Masson's trichrome stain of native trachea; trachea processed with the original/current de-ep protocol;
- 2 and trachea processed with the new de-ep protocol. 10x and 60x magnifications are shown in the top and
- 3 bottom rows respectively.

- 1 **Figure 9.** Verhoeff's elastin stain of native trachea; trachea processed with the original/current de-ep protocol;
- 2 and trachea processed with the new de-ep protocol. 10x and 60x magnifications are shown in the top and
- 3 bottom rows respectively.

4

International Journal of MEDICAL STUDENTS

- 1 Figure 10. Alcian blue stain of native trachea; trachea processed with the original/current de-ep protocol; and
- 2 trachea processed with the new de-ep protocol. 10x and 60x magnifications are shown in the top and bottom
- 3 rows respectively.

4

- INTERNATIONAL JOURNAL of MEDICAL STUDENTS
- 1 Figure 11. Growth curves of BEAS-2B on the new and old protocol's scaffolds over seven-day re-

2 epithelialization period.

Table 1. Original de-epithelialization protocol

Step	Reagents*	Time	Vol. (mL)	рН	Temp. (°C)	
1†	1% SDS	3 hr	75	7.4	37	
2†	ddH ₂ O	30 min	140	7.4	37	
4‡	1% Triton	30 min	140	7.4	37	
5‡	DPBS (-/-)	30 min	140	7.4	37	

* Reagents inside trachea (Lumen). Outside the trachea, DMEM with 10% FBS + 1% Pen/Strep solution remains circulating

† De-epithelialization process – pulsatile perfusion

‡ Washing steps - continuous perfusion

MEDIC

1

Table 2. New de-epithelialization protocol

Step	Reagents*	Time	Vol. (mL)	рН	Temp. (°C)	
1†	1% SDS	1 hr	75	7.4	37	
2†	0.1% SDS	1 hr	75	7.4	37	
3†	0.01% SDS	1 hr	75	7.4	37	
4‡	1% Triton	30 min	140	7.4	37	
5‡	DPBS (-/-)	30 min	140	7.4	37	

* Reagents inside trachea (Lumen). Outside the trachea, DMEM with 10% FBS + 1% Pen/Strep solution remains circulating

† De-epithelialization process - pulsatile perfusion

‡ Washing steps - continuous perfusion

1 Table 3. Control – New de-epithelialization protocol without SDS. Identical conditions as new protocol, except

2

Step	Reagents*	Time	Vol. (mL)	рН	Temp. (°C)	
1†	1% DPBS	1 hr	75	7.4	37	
2†	1% DPBS	1 hr	75	7.4	37	
3†	1% DPBS	1 hr	75	7.4	37	
4‡	1% Triton	30 min	140	7.4	37	
5‡	DPBS (-/-)	30 min	140	7.4	37	

* Reagents inside trachea (Lumen). Outside the trachea, DMEM with 10% FBS + 1% Pen/Strep solution remains circulating

† De-epithelialization process - pulsatile perfusion

‡ Washing steps - continuous perfusion

perfused with DPBS instead of SDS.