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INTRODUCTION 

 

Artificial intelligence (AI) has shown incredible promise in clinical medicine, with key advances including 

enhanced diagnostic accuracy, better disease detection and improved workflow efficiency.1 Moreover, 

deep learning models, such as convolutional neural networks (CNN), have the extraordinary ability to 

constantly learn and develop reasoning from provided datasets. This allows CNNs to perform complex 

tasks such as recognizing and classifying patterns of disease from unorganized datasets into different 

categories.2-3 Such capability makes deep learning models great candidates for use in various clinical 

specialties to aid in imaging and other diagnostic techniques, helping to increase accuracy rates and 

improve patient outcomes.3 Several CNN models are being trialed by numerous research groups and 

are anticipated to be introduced into mainstream clinical practice in several specialties within medicine 

and surgery, including the ones illustrated in Figure 1. However, several gaps in the literature persist, 

such as the lack of real-world prospective studies, limited models showcasing generalizability, 

“blackbox” models with inadequate interpretability, and insufficient studies with external validation.4-5 

These limitations are currently preventing the adoption of several AI models into mainstream clinical 

workflow.  

 

This narrative review aims to evaluate the current and potential applications of CNNs and other AI 

models in several clinical specialties, answering the following research question: How can CNN models 

and other AI-based models be utilized across various clinical specialties, and what are the current 

challenges and ethical implications hindering their widespread integration into clinical practice? Given 

the variability in assessment methods of AI models used in different studies in the literature, this review 

presents the latest advances through various evaluation metrics, including, but not limited to, accuracy 

percentages, specificity, sensitivity, F1 scores, and direct comparison of model performance with 

physicians. Where applicable, other metrics such as data quality and utility for real-world clinical 

integration are also discussed. It is crucial that not only currently practicing physicians, but also medical 

students and future doctors are aware of these recent advances in AI, which are expected to change 

the clinical landscape in the coming years.  
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METHODS: SEARCH STRATEGY AND SELECTION CRITERIA 

 

The main aim of this narrative review is to evaluate relevant literature and analyze recent advances in 

AI in various clinical specialties. An extensive literature search was conducted using multiple 

appropriate databases, including MEDLINE, PubMed, Google Scholar, Web of Science, and Embase, 

to identify relevant original research studies and review articles for this narrative review. In addition, 

certain websites were used for technical information on AI products that are currently in use and where 

relevant articles were not available. Searches were made using keywords, including “artificial 

intelligence”, “AI”, “deep learning”, “CNN models” and “large language models” for the range of clinical 

specialties covered in this narrative review. Studies were selected based on their inclusion of relevant 

recent advances using CNN models, deep learning algorithms or other AI models in the appropriate 

specialties discussed. The time frame of the included studies was 2017-2025. The scale for the quality 

assessment of narrative review articles (SANRA) guidelines was considered and used when reviewing 

literature.   



International Journal of Medical Students 

5 
IJMS 

DISCUSSION 

 

The Basis of AI Learning Algorithms 

Initially, AI algorithms were designed and developed using machine learning (ML), an AI learning 

method that uses pattern identification to learn from presented data and minimize errors.3 However, 

this type of learning requires large amounts of structured data for pattern recognition. Deep learning 

(DL), a subset of ML, can eliminate the manual task of data mining by using unstructured data to 

effectively group similarities and enhance pattern recognition.2  

 

DL and ML are becoming the most common forms of AI learning that many organizations across the 

world are adopting, including organizations in the healthcare sector. For example, UC San Diego Health 

has adopted an AI model supported by Amazon Web Services (AWS) to analyze chest X-rays and 

assist radiologists in the detection of pneumonia in COVID-19 patients.6 Moreover, the AI model helped 

diagnose pneumonia in COVID-19 patients where the typical symptoms were absent.6 Another example 

includes the use of the Targeted Real-Time Early Warning System (TREWS) to identify patients at risk 

of developing sepsis by Johns Hopkins Medicine. 

 As part of a study, TREWS was used by over 4,000 clinicians across 5 hospitals, where the tool was 

used to treat 590,000 patients.7 In contrast to previously tested electronic tools, which could correctly 

predict sepsis only 2-5% of the time, this AI model accurately predicted almost 40% of the sepsis cases 

among the 82% presented.7  

 

Additionally, DL algorithms can be used to develop an artificial neural network (ANN) where there is an 

input layer, middle hidden layer(s), and an output layer to broadly function as neurons in a human brain. 

 Data can be fed into the input layer, and information can be passed onto the next layer and receive an 

output, much like a brain.8 Now, using such algorithms, researchers are developing a type of ANN called 

convolutional neural networks (CNN), which relies on computer vision (CV), where images and videos 

are fed into the neural network.3 CNNs employ convolutional layers consisting of learnable filters, which 

are applied to the input image to detect specific features.9 These features can be associated with 

clinically meaningful entities, facilitating classification, detection and segmentation tasks, as shown in 

Figure 1.9     

   

With imaging investigations being central to the diagnosis and management of patients in several 

medical and surgical specialties, AI models, particularly CNNs, could aid medical teams in image 

analysis, allowing for better pathology detection. 

 If implemented correctly into clinical practice, these CNN models can allow for more accurate and faster 

diagnoses, leading to better healthcare outcomes.10  

 

 

AI Use in Cardiology: Using AI models for ECGs, echocardiography and intravascular imaging 
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ECGs and Echocardiography 

Cardiovascular medicine encompasses several serious heart conditions, including myocardial infarction 

(MI), heart failure (HF), or fatal arrhythmias requiring immediate medical attention. Several diagnostic 

techniques are used in diagnosis, with electrocardiograms (ECG) and echocardiography being some 

of the most requested investigations in cardiology, in addition to others. Analysis of an ECG accurately 

and efficiently is crucial for a diagnosis to allow the medical team to proceed with the appropriate 

management for the patient. However, ECGs may not always be correctly interpreted, with one meta-

analysis study showing that the cardiologists’ interpretation accuracy ranged from 49% to 92%.12  

 

CNN models hold strong potential for enhancing the interpretation of ECGs with more accuracy, leading 

clinicians towards a more accurate diagnosis. Hughes et al. were able to train a CNN model to interpret 

a range of ECGs and even perform on par with cardiologists, and also exceed the standards of the 

currently in-use automated ECG detection system in 4 out of 5 diagnostic classes.13 Further research 

has yielded more impressive results in not only recognizing abnormal ECG patterns but also classifying 

them into various cardiovascular diseases.14-15 Yoon et al. used ECG graphs and converted them into 

grayscale images to train the CNN to recognize ECG patterns with a remarkable accuracy of 95.1%.14 

Going further, Makimoto et al. were able to train a CNN model to detect an MI from ECG images and 

outperformed 10 physicians with a higher F1 score (83% vs 81%) and higher accuracy (70% vs 67%). 

 

However, while these results are impressive, it is important to note that generalizability holds significant 

weight in determining whether such models can be implemented into mainstream clinical practice. For 

instance, the methods used to train the CNN were different in these studies, with Yoon et al. using ECG 

graphs and converting them into grayscale images, while Makimoto et al. were able to train their model 

directly from ECG images.14-15 Such differences indicate the need for further external validation, and 

importantly, research groups adopting a universal training protocol to prevent any overfitting to specific 

protocols and datasets. 

 

In addition to ECGs, echocardiography is also a highly useful diagnostic tool for various cardiac 

pathologies. Echocardiography can be used to determine any abnormalities in cardiac size and shape, 

pumping strength via the ejection fraction, valvular disorders, cardiac muscle damage, congenital heart 

defects, as well as many others.17 As with ECGs, there is a potential for misinterpretation of 

echocardiography images with inaccuracies up to 30% for transthoracic echocardiography (TTE). Using 

deep learning algorithms could help reduce interpretation inaccuracies as well as reduce the time 

required for echocardiogram interpretation.18  

 

In one study, Madani et al. developed CNN models for TTE analysis through videos and images using 

over 250 echocardiograms, with the CNN model achieving an impressive overall accuracy of 97.8%.19 

Additionally, analysis on single images provided an accuracy of 91.7%, significantly higher than the 

accuracies of 70.2-84.0% achieved by board-certified echocardiographers.19 In a similar study, Naser 

et al. trained two-dimensional and three-dimensional CNN models to classify cardiac views obtained 
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from TTE.20 The two-dimensional CNN achieved an overall accuracy of 96.8%, while the three-

dimensional CNN had an overall accuracy of 96.3%.20 These high diagnostic values emphasize the 

great potential for deep learning models to improve the diagnoses of cardiac diseases through 

echocardiography.     

 

While these outcomes for the interpretation of ECGs and echocardiography imaging are encouraging, 

as indicated in Figure 1, several limitations hinder their widespread integration into daily clinical 

practice. Many of the studies highlighting the ability of CNNs to assist in clinical decision making are 

often trained on existing, retrospective datasets. Such datasets may be useful for initial training, but 

CNNs must be trained with prospective data to account for the variability seen in real-world clinical 

practice. Further, generalizability remains a critical issue, as models for both ECG and 

echocardiography interpretation must perform similarly when presented with different, diverse data.21  

 

AI use for arrhythmia detection from wearable devices 

Additionally, AI models are being integrated into wearable devices, such as smartwatches and smart 

rings, to aid in the early detection of arrhythmias.22 One of the most widely used features on these 

wearables includes the detection of atrial fibrillation (AF), namely via smartwatches.22 These devices 

monitor heart rate (HR) and rhythm through either photoplethysmography (PPG) or a single-lead ECG, 

or both, where the time intervals between heartbeats are calculated and various algorithms are used to 

classify the heart rhythm.22-23 PPG works by illuminating the skin with a light-emitting diode (LED) and 

detecting the amount of light reflected, which varies according to changes in blood volume during the 

cardiac cycle.23 A photodetector measures the intensity of the light reflected, building a pulse pressure 

waveform, which is not only used to calculate HR, but importantly, the time between each heartbeat 

corresponding to the R-R interval.23 In AF, the pulse waveform is highly irregular, representing an 

irregular R-R interval, notifying the user of suggestive AF through an irregular pulse notification (IPN), 

which could be useful for paroxysmal AF.23-24 Nevertheless, this technology is only suggestive and 

cannot confirm AF or other arrhythmias.23 Devices capable of performing single-lead ECGs work by 

using two metal plates to create one positive electrode (often located on the back of the watch) and one 

negative electrode (often located on the digital crown), thereby allowing measurement of Lead I.24 

These devices can detect arrhythmias such as AF with more accuracy than those with only PPG 

capacity.22 However, the main limitation of performing an ECG using such wearables is that only a 1-

lead view is ever available.24 Ultimately, this means that any abnormalities that would be seen in other 

leads are missed, and also increases the risk of artefacts such as poor sensor-skin contact and muscle 

motion, which could prevent accurate ECG readings from being recorded.24  

 

To address these concerns, several wearables now incorporate DL detection algorithms to increase the 

accuracy of ECG recordings and PPG signals.23 These algorithms aid in noise reduction, normalization 

of data and segmentation to increase the accuracy of PPG tachograms and ECG waveforms.23 

Moreover, CNNs can be employed not only to categorize unprocessed data, but also to detect complex 

patterns from PPG signals and spatial pattern recognition from ECG traces.23 Such CNNs provide an 
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additional advantage of detecting and analyzing dynamic changes throughout the day, allowing for 

continuous, passive ECG monitoring, provided that enough data is stored by the wearable.23   

 

AI use in intravascular imaging 

In addition to AI use for non-invasive investigations, there is potential for AI in invasive imaging 

modalities such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT), as 

highlighted in Figure 1.25 Although both involve reconstructing images of intracoronary structures via a 

catheter inserted into coronary arteries, IVUS uses ultrasound, while OCT uses low-coherence light.26 

Additionally, IVUS offers deeper penetration of vessel walls (inclusive of adventitia) than OCT, making 

IVUS a useful investigation for arteries with increased plaque burden, albeit the low-resolution images.26 

In contrast, OCT provides high-resolution images compared to IVUS, offering greater detection rates of 

thin-cap fibroadenoma (TCFA), arterial plaque rupture and stent malapposition.25-26  

 

Currently, with OCT images, automation is primarily limited to the segmentation of atherosclerotic 

plaques, where the quantification and characterization of any detected plaques are performed.25,27 

Similarly, with IVUS, DL algorithms can assist in feature extraction to increase the detection rates of 

TCFA.25 However, interpretation of these intravascular images requires a clinician with extensive 

training, and can be repetitive after reviewing several images.25 Implementing DL algorithms could help 

to relieve experts of this repetitive task, and also allow real-time analysis of intravascular images.25 

Going further, researchers have developed neural networks for this task, such as the one developed by 

Chu et al., where a neural network could automatically segment a single OCT frame in a remarkable 

0.07 seconds.25,28 Furthermore, pixel-based DL algorithms could allow for the incorporation of three-

dimensional spatial data and also the segmentation of individual plaque components.25 This could allow 

for more detailed and accurate identification of different plaques, aiding in clinical decision-making.25,27 

 

However, despite the potential benefits of using AI models for intravascular images, more research is 

required before integration into mainstream clinical practice. As for AI use in ECG and 

echocardiography interpretation, AI for IVUS and OCT still requires large annotated datasets to test 

external validation on other datasets.25 Further, models must be tested on datasets encompassing the 

wider population to ensure that they have similar performance in real-world clinical practice.25  

 

 

AI use in Gastroenterology: Augmenting disease detection from imaging-based investigations 

With high-definition photographic visuals being a crucial component for procedures in gastroenterology, 

the integration of CNNs into picture-based investigations could prove highly useful, as shown in Figure 

1. Currently, colonoscopy and small-bowel capsule endoscopy (SB-CE) are some of the most popular 

investigations to integrate AI models.29-30  

 

Colonoscopy 
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The integration of AI models into colonoscopies could be useful in identifying polyps. With current 

estimates indicating that physicians can miss colorectal polyps in colonoscopy up to 28% of the time, 

this type of AI could help to reduce the chances of missing such lesions.31   

 

One way that AI is being integrated into colonoscopy is through devices such as ‘GI Genius’, a medical 

device that is built on deep learning for computer aided diagnosis (CAD) and is approved for use in the 

United States and the European Union.29 The usefulness of this device was tested in a large, 

randomized multi-center trial where adenoma miss rate (AMR) was calculated for colonoscopies done 

with or without AI to identify colorectal neoplasia, a risk factor for the development of colorectal cancer.29 

Wallace et al. conducted this study in 2 groups, with 2 different arms, where in 1 group, colonoscopy 

was done with AI-enabled (GI-Genius enabled), followed by colonoscopy without AI-enabled, and vice 

versa in the other group.29 Using this design, Wallace et al. showed that AMR was significantly lower at 

15.5% in the group with AI first, compared to 32.4% AMR in the group with colonoscopy first, which is 

more than a 2-fold difference.29 With the necessary further studies, AI could be used in colonoscopy to 

aid physicians, reducing the risk of missing colorectal polyps.  

 

Capsule endoscopy 

With the success of AI in detecting colorectal polyps, there is great potential to incorporate AI into 

endoscopies, helping to increase accuracy and consistency in detecting gastrointestinal lesions.30  

 

The introduction of capsule endoscopy (CE) provided a breakthrough for gastroenterologists to 

investigate the small bowel in a non-invasive manner for conditions such as blood content, vascular 

lesions, and inflammatory bowel diseases.32 Although CE is beneficial in diagnosing and managing 

small bowel diseases, analyzing full-length CE videos with approximately 50,000 images can be a 

tedious and time-consuming task.32 This can take between 30-120 minutes per video, leading to 

physicians reviewing CE videos at a great pace, with a recent study reporting a CE miss rate of 11% 

for all SB findings and 18.9% for single-mass lesions.32-33 Using AI to aid specialists in reviewing CE 

videos could help reduce the time taken and could improve the miss rate of SB lesions.34  

 

Ongoing research to implement AI systems into the analysis of SB-CE videos has shown promising 

potential. Ding et al. developed a CNN model to aid in the detection of multiple SB conditions, including 

ulcers, polyps, inflammation, vascular lesions, and lymphangiectasia through SB-CE.34 The CNN model 

outperformed physicians with a higher sensitivity for per-patient analysis (99.88% vs 74.57%, 

respectively) and per-lesion analysis (99.90% vs 76.89%, respectively).34 Additionally, the CNN model 

achieved a substantially shorter reading time than the physicians (5.9 ± 2.23 minutes vs 96.6 ± 22.53 

minutes, respectively).34 With a CNN reading time that is over 90 minutes less than conventional 

reading, the use of the model in clinical practice could potentially save significant time when reviewing 

SB-CE videos. 
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Further, a study highlighted the use of a CNN model for the detection and classification of SB lesions 

with hemorrhagic potential using CE images.32 Similar to the study conducted by Ding et al., the 

researchers showed a high overall accuracy of 99%, sensitivity of 88%, and specificity of 99%.32,34 

Crucially, in addition to identifying lesions, this CNN model could also classify lesions from CE images, 

suggesting that such CNNs could soon have the capacity to classify other SB lesions.32 If introduced 

into clinical practice, these CNNs could become key players for SB-CE analysis with minimal input from 

physicians, thereby reducing their workload, and importantly, could address the physician miss rate of 

SB lesions from CE.33   

 

Nevertheless, in both studies, the researchers report several limitations, with the most important one 

being that still frames were used as opposed to moving images.32,34 In reality, SB-CE provides moving, 

full-length videos, and further research is required to evaluate the true performance of these AI models 

on full-length SB-CE videos, helping to assess generalizability. Additionally, these studies have 

assessed the performance of CNNs on retrospective, existing data.32,34 Moving forward, as highlighted 

by several researchers, prospective studies are necessary and are currently in progress to accurately 

evaluate the true clinical benefit of these AI-based models in patient care.34   

 

 

AI use in Dermatology: Improving skin cancer detection 

Using CNN models for image interpretation and pattern analysis can aid in recognizing skin conditions, 

especially skin cancers, as outlined in Figure 1.35   

 

Researchers trained a CNN model using over 129,000 clinical images comprising over 2,000 skin 

diseases to distinguish between melanocytic and keratinocytic lesions.35-36 The CNN model trained to 

classify epidermal and keratinocytic lesions achieved an accuracy of over 91%, and performed on par 

or even outperformed 21 board-certified dermatologists using clinical images.35 Furthermore, the ability 

of the CNN model to classify melanomas using dermoscopic images, as opposed to clinical images, 

was also matched to the accuracy levels of dermatologists.35 In another similar study from China, 

researchers also demonstrated high diagnostic values for a novel CNN model to recognize certain skin 

diseases from a dataset comprising 14 different categories of common cutaneous diseases.37 Similar 

to research conducted by Esteva et al., this CNN also showed a high overall accuracy of 94.8%, with a 

sensitivity of 93.4% and a specificity of 95.0%.37 Although in a separate test against 280 board-certified 

dermatologists with 200 different images, the CNN and the dermatologists both had like-for-like figures 

for average accuracy (92.75% vs 92.13%) and specificity (94.07% vs 95.50%), the sensitivity was 

significantly higher compared to dermatologists (83.50% vs 68.51%).37 These figures again emphasize 

the potential for the CNN model to perform at the same competency as dermatologists, and at times, 

at higher levels.37  

 

The positive results of these trials suggest that AI could be used to classify skin cancers and even aid 

dermatologists in reducing workload and providing diagnoses. Moreover, Esteva et al. denote that the 
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ability of the CNN model to classify lesions using clinical images as opposed to widely used 

dermoscopic images could be highly useful in introducing the technology to a smartphone app.35 With 

the increasing use of smartphones across the world, such AI could be integrated into apps, providing 

skin lesion classification from just a smartphone camera.35 This, in turn, could allow skin conditions, 

such as cancers, to be detected and classified in primary care, thereby allowing general practitioners 

to prioritize urgent or non-urgent referrals to dermatologists in secondary care.35  

 

Down the line, this could allow for improved management of these conditions, reducing the risk of 

cancer development, and thereby providing a great public health benefit.38 In addition, prioritizing 

appointments in this way would free up time for dermatologists, allowing them to use that time to 

complete other tasks or see more patients, as seen in a recent pilot project where the Skin Analytics 

AI-Powered Teledermatology was reviewed by the University Hospitals of Leicester NHS Trust in the 

UK.32 This AI tool, known as DERM, which recently received conditional recommendation for use by 

the National Institute for Health and Care Excellence (NICE), reviewed skin lesion images and classified 

them as either “diagnosis of concern” or “benign”.39-40 The project showed there was a reduction in the 

NHS two-week wait referrals for cancers while freeing up 1,450 outpatient appointments, and achieving 

a clinical time saving of 263 minutes per 100 patients.41 This pilot project showed promising results, 

suggesting there could be several benefits from such AI-based technologies, provided that more 

encouraging studies are carried out.  Further real-world prospective studies are still required to evaluate 

the true benefit in the clinic and address any potential challenges before this AI technology can be 

introduced into clinical practice.35   

 

 

AI use in Ophthalmology: Enhancing pathology detection from retinal imaging  

Retinal imaging is used widely to diagnose several retinal pathologies, including diabetic retinopathy 

(DR), glaucoma, and age-related macular degeneration (AMD).42 To make a diagnosis, an 

ophthalmologist is required to manually analyze and evaluate retinal fundus images, which is a time-

consuming process, as with other imaging-based investigations in other specialties.43 CNN models that 

can automatically analyze fundus images and categorize the pathology can assist ophthalmologists in 

making a diagnosis and point towards a management plan, as shown in Figure 1.  

 

In a recent study, Pandey et al. trained an ensemble of 5 CNNs to recognize and classify retinal 

pathologies into the following 4 categories: DR, glaucoma, AMD, and normal eyes from 100 unseen 

fundus images.42 With the performance of the CNN directly compared to 7 board-certified 

ophthalmologists, the CNN had a higher overall accuracy over all 4 categories, with a score of 79.2%, 

while the doctors scored 72.7%.42 Furthermore, the CNN ensemble had a higher overall score for 

correctly classifying images as DR, with a mean score of 76.8%, while the doctors had a mean score 

of 57.5%.42 The remarkable difference of over 19% highlights the impressive accuracy of the CNNs, 

which outperformed ophthalmologists.42 The CNN ensemble and ophthalmologists had similar 

classification scores for the other 3 categories, which were not statistically significant. 42 These favorable 
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results emphasize the great potential for using CNNs and other deep-learning algorithms to aid in the 

detection of retinal pathologies.  

 

Nevertheless, although Pandey et al. used unseen clinical images to train the CNN, using only 100 

images is not representative of all the pathologies seen in the real world.42 In clinical practice, 

ophthalmologists often see a range of retinal diseases, more than the 4 conditions used in the study. 42 

Furthermore, the images seen may not always be of high quality that CNNs can read with ease. Hence, 

CNNs trained on a large variable dataset are needed to target generalizability and avoid overfitting to 

one particular dataset, allowing them to be integrated for mainstream clinical use.  

 

 

AI use in Radiology: Improving image interpretation and disease detection 

The use of AI through CNNs has grown massively in radiology, with extensive research highlighting 

recent advances in image interpretation. Radiological imaging is an essential aspect of medical care, 

assisting clinicians in making crucial decisions in the management of a patient. Medical imaging 

consists of various modalities, including X-ray, ultrasound, computed tomography (CT), magnetic 

resonance imaging (MRI) and positron emission tomography (PET), which are central to various clinical 

specialties.44 Traditionally, radiologists manually analyze these images and provide a report for 

clinicians to use in their decision-making process.45 Extensive research has been carried out to evaluate 

the use of AI models to automate the analysis of radiological images to an extent, saving time for 

radiologists and potentially increasing accuracy.46  

 

Research using CNNs for disease detection and classification has been promising, with prominent 

advances highlighted in Figure 1. Several studies have shown that CNNs can be trained to recognize 

certain patterns, shapes and contours in imaging to identify certain pathologies.45 One meta-analysis 

comprising 20 studies highlighted that DL models could identify intracranial aneurysms, with excellent 

accuracy in detecting aneurysms more than 3 mm in size.47 More importantly, as highlighted by 

Abdollahifard et al., using AI to assist clinicians with detecting intracranial aneurysms increased the 

clinicians’ sensitivity by 12.8%.47 Carefully using such AI systems to support radiologists could lead to 

better interpretation of medical imaging and increased accuracy. Going further, other studies detail the 

use of AI models to detect and classify disease on imaging. AI models such as Brainiomix and 

iSchemaView automatically complete the Alberta Stroke Program Early CT Score (ASPECTS) from 

non-contrast CT scans (NCCT) for patients with an acute stroke.48 Grading using the ASPECTS system 

can be difficult due to the subtlety of ischemic changes on NCCTs, with a variable interobserver 

agreement, indicating that the grading of certain strokes may not always be unanimous.48 Implementing 

such AI-based software into clinical practice can help to enhance consistency and reduce diagnostic 

uncertainty in medical imaging.   

 

Additionally, CNNs could be widely utilized for image segmentation. Image segmentation is essentially 

the division of a medical image into distinct regions that correspond to specific anatomical or 
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pathological regions, helping to inform clinicians on potential diagnosis and treatment planning.49 

Traditional segmentation algorithms have been in place for several years, allowing radiologists to see 

abnormalities in imaging. However, the performance of these segmentation methods is complicated by 

complex medical images with unclear contours, ambiguous boundaries and variations in intensity, 

leading to poor images.49 Implementing CNNs to automatically extract features from highly complex, 

three-dimensional images to identify and outline pathological regions, and deliver superior performance 

can go a long way in detecting lesions.49 One recent meta-analysis comprising nine studies highlights 

the strong performance of CNNs in meningioma segmentation from MRI scans, with a pooled Dice 

score of 89%.50 Notably, CNN models trained on multiple MRI sequences performed better than those 

trained on single MRI sequences, emphasizing the need for high-quality datasets to develop robust and 

clinically viable CNN models.50 Interestingly, the authors noted that the dataset size did not significantly 

impact the accuracy of the CNN models, underlining that the quality of the dataset outweighs the 

quantity of the data available. 50 However, the lack of performance differences could suggest possible 

overfitting to the specific datasets used, which could ultimately limit generalizability.50  

 

Concerns around generalizability are significant, limiting the widespread integration of such AI models 

into clinical practice.51 Several CNN models have been developed to assist with diagnostic tasks, and 

many excel with remarkable accuracy and performance. However, when implementing the same model 

on a different dataset or another task with minor differences, effective generalization and similar 

performance are not always seen.51 Similarly, the lack of numerous well-annotated datasets presents 

a challenge in effectively training CNNs.51 Using large-sized, well-labeled datasets helps to train CNNs 

to recognize complex patterns and features and also aids in reducing overfitting.52 However, these 

annotations are only completed by radiologists, and being a significantly lengthy and tedious process 

has contributed to the scarcity of well-labeled datasets.52 Using data augmentation techniques by 

applying transformations can help not only to expand the dataset, but also to increase the diversity of 

the existing data.51 This can help to train CNNs on a more robust dataset and avoid learning patterns 

and features only from the original dataset, addressing generalizability.53 

 

 

AI use in Surgery: Providing intraoperative assistance in robot-assisted surgery 

Using the principles of image recognition and classification, CNN models could also be incorporated 

into surgical techniques, allowing for improved patient outcomes, as shown in Figure 1. Several studies 

described in this review have highlighted that AI can be useful in the detection and classification of 

pathologies into different categories.32,35,42 This capability of CNN models can be useful for the pre-

operative assessment of a patient’s clinical condition, before proceeding with surgery.  

 

There is great potential for integrating AI intraoperatively, though research is still emerging on this 

aspect of AI integration into surgery. One example includes an ML-based model that can predict the 

risk of developing hypoxemia, assisting anesthesiologists in anticipating such an event and proactively 

intervening.54 Such AI tools can augment clinical decision-making during surgery, helping to improve 
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patient safety.54 Meanwhile, further research into intraoperative AI use has shown significant 

advancements in robot-assisted surgery, with autonomous and semi-autonomous surgeries coming to 

light due to the integration of algorithms and computer vision.55 In recent years, there have been 

advances in orthopedics where specialists use robots such as the MAKO system for semi-autonomous 

robotic-arm assisted total knee arthroplasty (RATKA).56 This system runs on complex pre-operative 

planning through a computer program to map the joint in a three-dimensional view.56 From this, the 

surgeon guides the robotic arm to operate within the pre-defined areas, reducing the chances of an 

accident.56-57 Moreover, a study highlights that RATKA can also lead to superior surgical precision and 

better positioning of implants than manual surgical methods.56 These outcomes suggest that using such 

robotic surgical systems could lead to better outcomes and greater quality of care. 

 

AI models can also be used to improve visuals of the surgical field.58 During surgery, electrocautery 

devices are used for dissection and ligation of tissues, which subsequently creates smoke that can 

obscure the surgical field temporarily.58 Wang et al. proposed a CNN model, linked to a Swin 

transformer that can remove surgical smoke from the surgical footage in robotic surgery, improving 

image quality and producing a smoke-free surgical view.59  Augmented reality (AR) surgery is another 

surgical discipline that has the potential to enhance a surgeon’s capabilities by delivering real-time 

information in the surgeon’s field of view to improve accuracy and safety.60 Differentiating between 

native tissue and non-native surgical tools is a crucial challenge in AR for robotic surgery, which could 

be addressed by CNN models as shown by De Backer et al.60 This DL model developed for AR-guided 

robot-assisted kidney transplantation, achieved an impressive Dice score of 97.1% in correctly 

identifying surgical instruments, suggesting that such models can be integrated into AR surgery.58 

Furthermore, studies highlight using CNN models to complete real-time robotic suturing.58 Saeidi et al. 

developed a CNN model integrated into a robotic system, which could complete fully automated 

laparoscopic bowel anastomoses.58,61 Compared to manual laparoscopic surgery and traditional robot-

assisted surgery, the model showed superior consistency and accuracy when considering metrics such 

as needle placement, suture placement and completion time.61 

 

Despite promising studies highlighting advances in using AI models in surgery, there has not been 

enough research carried out to integrate such technologies into mainstream surgery confidently. 

Applying AI to surgical fields can present a substantial challenge as surgical interventions rely heavily 

on a surgeon’s practical skills, often in a high-risk, high-pressure, and highly dynamic operating 

theatre.62 AI systems have not reached this capability yet, and further studies exploring this critical issue 

are pertinent. Moreover, training AI algorithms requires a large range of annotated surgical images 

taken from real-time surgeries. The scarcity and difficulty in obtaining such data from surgical 

environments present a further challenge, hindering the training of AI-based models.62 Accountability 

remains a crucial issue that needs to be addressed to integrate AI-based surgical technologies into real-

world clinical practice.58 With the use of AI spanning from diagnosis, treatment planning, to robot-

assisted procedures, it can be difficult to determine who would be responsible if a negative patient 
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outcome occurs.58 Further clinical research is necessary to address these limitations and integrate AI 

into surgical fields safely and effectively. 

 

 

Current challenges, emerging AI models and pathways to clinical integration  

The existing literature has shown that there have been significant advancements in AI systems to assist 

doctors, perhaps allowing for the provision of better care. However, one major limitation preventing the 

integration of AI models into mainstream clinical practice is the “AI blackbox theory”.63 The theory stems 

from the issue that although many AI models, such as CNNs, are shown to be highly effective in various 

specialties, they perform tasks through highly complex computational layers, making interpretability 

difficult.64 Essentially, this leads to situations where the rationale behind decisions and 

recommendations from AI models cannot be explained, which is crucial for patient safety and clinician 

trust.63 This also raises concerns about allocating responsibility if an AI system contributes to an 

adverse patient outcome, especially if clinicians cannot explain AI recommendations.65 Furthermore, 

the lack of explainability of “blackbox” models can lead to issues with transparency requirements set by 

regulatory authorities when looking for integration into clinical practice.63,66  

 

These issues have prompted research into Explainable AI (XAI), where AI models use tools such as 

saliency maps or heatmaps to improve the interpretability of algorithms and how certain decisions are 

reached.67 These tools can improve AI models' interpretability and help reduce the “blackbox” nature.68 

However, as highlighted by Ghassemi et al., not all XAI models provide clinically relevant 

explanations.69 Some XAI methods, such as LIME and SHAP, generate rationales including heat maps 

to explain decisions, but these lack medical causality and instead provide technical reasons.69 

Moreover, significant XAI research has been done using retrospective studies, which do not test real-

world utility.69 Further research is required to develop transparent models that can give explanations 

grounded in medical science and trained on real-world data to improve confidence among clinicians 

and patients. Real-world, large-dataset prospective studies with such models are critical to validate their 

clinical benefits and facilitate their integration into mainstream clinical practice.69 

 

Another consideration is the recent emergence of open-source large language models (LLM) such as 

DeepSeek, which has altered the clinical AI landscape.70 Many other LLMs rely on expensive 

application programming interfaces (API) or external cloud infrastructure, making it difficult for resource-

limited healthcare institutions to access AI technologies, potentially widening global health disparities.70-

71 DeepSeek, unlike other LLMs, enables local deployment, allowing institutions to run such LLMs on 

their own network and has capabilities for continuous learning from publicly available open-source 

datasets.70 This can allow adoption by healthcare institutions without the financial burden of costly APIs 

or cloud subscriptions.70 Moreover, DeepSeek supports offline deployment, avoiding the need to 

transmit sensitive patient information through third-party servers, strengthening data security.70 The 

cost-saving and data privacy benefits have already led to over 90 Chinese tertiary hospitals adopting 

DeepSeek for diagnostic image analysis, administrative tasks, and clinical decision support.72 
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Nevertheless, despite these advantages with models like DeepSeek, these LLMs must be thoroughly 

investigated to ensure data privacy is intact and AI hallucinations do not lead to incorrect outcomes.73  

 

Despite several studies showing great potential for AI to assist clinicians in providing enhanced 

healthcare, it is also paramount that other ethical considerations of using AI technology are not 

overlooked.74 While using AI to process sensitive patient data can be beneficial, it is important to ensure 

that there are robust data protection measures to protect patient information.74 Additionally, using AI to 

aid in the decision-making process should also be balanced with important input from clinicians.75 

Crucially, AI must explicitly serve as a tool to enhance the decision-making process, rather than replace 

human judgment.71 Using clinician expertise to identify errors made by AI and considering patient 

preferences should be of the utmost priority to provide the best patient-centered care.74 Moving forward, 

further ethical considerations should be taken into account to make the most of AI in clinical practice, 

while maintaining the highest ethical standards.     
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LIMITATIONS OF THIS NARRATIVE REVIEW  

 

The fact that this paper is a narrative review poses a limitation, as there was no quantitative question 

being addressed. Nevertheless, the literature was reviewed and summarized using the SANRA 

guidelines to effectively address the qualitative research question outlined in the introduction. 

Additionally, the uses of AI were not covered in every medical and surgical specialty, as there would be 

too much to include in one narrative review. The specialties that had major developments were selected, 

and key AI advances were covered in this review.   
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DECLARATION OF AI USE 

 

AI was solely used in the initial stages of this narrative review to only gain a general understanding 

and overview of the current research trends in the uses of AI for each of the specialties covered. AI 

was not used at any point to synthesize or write up material from research. All content is original and 

was written without plagiarism.    
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SUMMARY - ACCELERATING TRANSLATION 

 

Artificial intelligence (AI) is currently being used in several sectors around the world to automate tasks. 

Clinical medicine is one field where AI can be beneficial to automate tasks, with several studies 

demonstrating that AI models can carry out tasks with impressive accuracy and efficiency. The main 

aim of this article is to evaluate the recent advances and applications of various types of AI models in 

different clinical specialties. Research was carried out through analysis of numerous peer-reviewed 

articles taken from online medical research databases, such as PubMed.  

 

The research showed increasing evidence of AI models, such as convolutional neural networks (CNN), 

having the capacity to carry out complex tasks to aid physicians in their clinical decision-making across 

several specialties. CNNs, a type of deep learning (DL) model, can inherently recognize and classify 

patterns, making them great candidates for use in diagnostic investigations. In cardiology, several 

researchers showed the potential for CNNs to aid clinicians through automated analysis of 

electrocardiograms (ECGs) and echocardiography, allowing for recognition of various pathologies. 

Furthermore, DL algorithms can be applied to wearable devices, such as smartwatches, allowing them 

to passively monitor for arrhythmias with precision, which could be useful for clinicians to review if widely 

adopted. Other research also shows the potential for AI models to assist in complex intravascular 

imaging by recognizing image components with more accuracy, allowing for greater detection of cardiac 

arterial pathologies. In gastroenterology, greater detection rates of abnormal growths and other 

pathologies through CNN-based colonoscopy could lead to earlier identification of colorectal cancers. 

Similarly, CNNs can be useful in analyzing captured footage from capsule endoscopy, where a small 

camera attached to a pill is swallowed to take pictures and videos of the small intestine. This analysis 

is a typically time-consuming task for physicians, and CNNs could help by detecting abnormalities at a 

much greater pace and accuracy. Comparably, the same principle applies in ophthalmology, where 

CNNs could be used to evaluate retinal images, aiding ophthalmologists in detecting more pathologies 

of the eye.  

 

In dermatology, research shows that CNNs can aid in recognizing skin cancers from clinical images 

with ease and accuracy, allowing for earlier detection rates. Moreover, recent studies show the 

integration of CNNs into software to detect and analyze images taken from a smartphone camera, 

allowing the expansion and revolution of teledermatology. Radiology is one field where the use of AI 

models is substantial and could be greatly beneficial. As with intravascular imaging, CNNs and other AI 

models could help radiologists in analyzing shapes and contours with more precision, allowing for better 

detection and classification of pathologies from imaging. These same principles could aid in surgical 

techniques and robot-assisted surgery, where AI models view and analyze the surgical field before the 

surgery is commenced, assisting with the surgeon’s precision. Furthermore, AI models could help to 

provide a clear view for the surgeon in augmented reality (AR) surgery, allowing for improved accuracy 

and safety. Remarkable studies have also shown that robotic surgery equipped with AI models can 
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complete automated suturing, providing higher accuracy and consistency than traditional surgical 

techniques.  

 

Recently, there has also been the introduction of large language models (LLMs) which can provide 

quick support and analysis for administrative tasks, diagnostic imaging and clinical decision support. 

Models such as DeepSeek can also run offline or on institutions’ own networks, which provides a 

substantial financial benefit for resource-limited institutions and hospitals where expensive online 

services cannot be afforded. Nevertheless, despite the added advantage of these LLMs, further 

extensive research must be done to ensure that there are robust data protection measures.  

 

Despite researchers showing the great potential for AI to be used in clinical practice, several challenges 

and concerns still exist that are preventing widespread clinical integration. The most significant limitation 

is the “AI blackbox theory”, where the reasoning behind certain AI responses and decisions cannot be 

explained. This raises concerns around patient safety and clinician trust, and allocating responsibility if 

AI contributes to an adverse patient outcome. Although efforts have been made to introduce explainable 

AI (XAI) models, these are still not enough, as XAI models do not always provide medical rationale 

behind clinical recommendations. Furthermore, concerns remain around generalizability and external 

validation, where AI models do not have similar performance with different datasets. Additionally, many 

studies assessing AI models have been carried out on existing retrospective datasets. More research 

needs to be focused on real-time, large-dataset, diverse prospective studies with transparent AI models, 

where patient data and outcomes need to be followed to validate their true clinical benefit and facilitate 

mainstream clinical adoption.  
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CONCLUSION 

 

Integrating AI into the clinical setting can revolutionize healthcare in countless ways with recent studies 

showing encouraging results. The reviewed literature for this article has demonstrated a massive 

potential for the use of AI in several specialties that could lead to better patient care. There has been 

extensive research into the applications of AI in medicine and surgery, namely through the integration 

of deep learning algorithms with some systems using computer vision. Medically, researchers have 

achieved encouraging results in developing CNN models to detect, recognize, and classify clinical 

images to aid physicians in various disciplines and specialties. Surgical studies have highlighted using 

AI models in robot-assisted surgery to guide surgeons, helping to enhance accuracy and reduce the 

risk of complications, leading to better outcomes. However, despite these studies, more research is 

required to move ahead and implement AI into everyday clinical care, as many developed CNN models 

are still being tested on existing data from retrospective studies. Other prominent limitations in existing 

research include the development of “blackbox” models that lack interpretability, and limited models 

assessed on generalizability and external validation. Long-term, real-world prospective studies 

comprising diverse datasets are imperative to assess the true clinical benefits and address any potential 

drawbacks and limitations before AI can be introduced into mainstream clinical practice.   
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Figure 1. Overview of the Applications of AI Models Across Various Specialties in Medicine and 
Surgery. 

Figure 1. The diagram highlights various applications of artificial intelligence (AI) models in several 
clinical specialties in medicine and surgery, as discussed in this article. 


