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INTRODUCTION

Artificial intelligence (Al) has shown incredible promise in clinical medicine, with key advances including
enhanced diagnostic accuracy, better disease detection and improved workflow efficiency.! Moreover,
deep learning models, such as convolutional neural networks (CNN), have the extraordinary ability to
constantly learn and develop reasoning from provided datasets. This allows CNNs to perform complex
tasks such as recognizing and classifying patterns of disease from unorganized datasets into different
categories.z® Such capability makes deep learning models great candidates for use in various clinical
specialties to aid in imaging and other diagnostic techniques, helping to increase accuracy rates and
improve patient outcomes.® Several CNN models are being trialed by numerous research groups and
are anticipated to be introduced into mainstream clinical practice in several specialties within medicine
and surgery, including the ones illustrated in Figure 1. However, several gaps in the literature persist,
such as the lack of real-world prospective studies, limited models showcasing generalizability,
“blackbox” models with inadequate interpretability, and insufficient studies with external validation .5
These limitations are currently preventing the adoption of several Al models into mainstream clinical

workflow.

This narrative review aims to evaluate the current and potential applications of CNNs and other Al
models in several clinical specialties, answering the following research question: How can CNN models
and other Al-based models be utilized across various clinical specialties, and what are the current
challenges and ethical implications hindering their widespread integration into clinical practice? Given
the variability in assessment methods of Al models used in different studies in the literature, this review
presents the latest advances through various evaluation metrics, including, but not limited to, accuracy
percentages, specificity, sensitivity, F1 scores, and direct comparison of model performance with
physicians. Where applicable, other metrics such as data quality and utility for real-world clinical
integration are also discussed. It is crucial that not only currently practicing physicians, but also medical
students and future doctors are aware of these recent advances in Al, which are expected to change
the clinical landscape in the coming years.
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METHODS: SEARCH STRATEGY AND SELECTION CRITERIA

The main aim of this narrative review is to evaluate relevant literature and analyze recent advances in
Al in various clinical specialties. An extensive literature search was conducted using multiple
appropriate databases, including MEDLINE, PubMed, Google Scholar, Web of Science, and Embase,
to identify relevant original research studies and review articles for this narrative review. In addition,
certain websites were used for technical information on Al products that are currently in use and where
relevant articles were not available. Searches were made using keywords, including “artificial
intelligence”, “Al”, “deep learning”, “CNN models” and “large language models” for the range of clinical
specialties covered in this narrative review. Studies were selected based on their inclusion of relevant
recent advances using CNN models, deep learning algorithms or other Al models in the appropriate
specialties discussed. The time frame of the included studies was 2017-2025. The scale for the quality
assessment of narrative review articles (SANRA) guidelines was considered and used when reviewing

literature.
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DISCUSSION

The Basis of Al Learning Algorithms

Initially, Al algorithms were designed and developed using machine learning (ML), an Al learning
method that uses pattern identification to learn from presented data and minimize errors.> However,
this type of learning requires large amounts of structured data for pattern recognition. Deep learning
(DL), a subset of ML, can eliminate the manual task of data mining by using unstructured data to

effectively group similarities and enhance pattern recognition.?

DL and ML are becoming the most common forms of Al learning that many organizations across the
world are adopting, including organizations in the healthcare sector. For example, UC San Diego Health
has adopted an Al model supported by Amazon Web Services (AWS) to analyze chest X-rays and
assist radiologists in the detection of pneumonia in COVID-19 patients.® Moreover, the Al model helped
diagnose pneumonia in COVID-19 patients where the typical symptoms were absent.® Another example
includes the use of the Targeted Real-Time Early Warning System (TREWS) to identify patients at risk
of developing sepsis by Johns Hopkins Medicine.

As part of a study, TREWS was used by over 4,000 clinicians across 5 hospitals, where the tool was
used to treat 590,000 patients.” In contrast to previously tested electronic tools, which could correctly
predict sepsis only 2-5% of the time, this Al model accurately predicted almost 40% of the sepsis cases

among the 82% presented.”

Additionally, DL algorithms can be used to develop an artificial neural network (ANN) where there is an
input layer, middle hidden layer(s), and an output layer to broadly function as neurons in a human brain.
Data can be fed into the input layer, and information can be passed onto the next layer and receive an
output, much like a brain.® Now, using such algorithms, researchers are developing a type of ANN called
convolutional neural networks (CNN), which relies on computer vision (CV), where images and videos
are fed into the neural network.® CNNs employ convolutional layers consisting of learnable filters, which
are applied to the input image to detect specific features.® These features can be associated with
clinically meaningful entities, facilitating classification, detection and segmentation tasks, as shown in

Figure 1.°

With imaging investigations being central to the diagnosis and management of patients in several
medical and surgical specialties, Al models, particularly CNNs, could aid medical teams in image
analysis, allowing for better pathology detection.

Ifimplemented correctly into clinical practice, these CNN models can allow for more accurate and faster

diagnoses, leading to better healthcare outcomes. 0

Al Use in Cardiology: Using Al models for ECGs, echocardiography and intravascular imaging
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ECGs and Echocardiography

Cardiovascular medicine encompasses several serious heart conditions, including myocardial infarction
(MI), heart failure (HF), or fatal arrhythmias requiring immediate medical attention. Several diagnostic
techniques are used in diagnosis, with electrocardiograms (ECG) and echocardiography being some
of the most requested investigations in cardiology, in addition to others. Analysis of an ECG accurately
and efficiently is crucial for a diagnosis to allow the medical team to proceed with the appropriate
management for the patient. However, ECGs may not always be correctly interpreted, with one meta-

analysis study showing that the cardiologists’ interpretation accuracy ranged from 49% to 92%.12

CNN models hold strong potential for enhancing the interpretation of ECGs with more accuracy, leading
clinicians towards a more accurate diagnosis. Hughes et al. were able to train a CNN model to interpret
a range of ECGs and even perform on par with cardiologists, and also exceed the standards of the
currently in-use automated ECG detection system in 4 out of 5 diagnostic classes.'® Further research
has yielded more impressive results in not only recognizing abnormal ECG patterns but also classifying
them into various cardiovascular diseases.''® Yoon et al. used ECG graphs and converted them into
grayscale images to train the CNN to recognize ECG patterns with a remarkable accuracy of 95.1%.%4
Going further, Makimoto et al. were able to train a CNN model to detect an MI from ECG images and

outperformed 10 physicians with a higher F1 score (83% vs 81%) and higher accuracy (70% vs 67%).

However, while these results are impressive, it is important to note that generalizability holds significant
weight in determining whether such models can be implemented into mainstream clinical practice. For
instance, the methods used to train the CNN were different in these studies, with Yoon et al. using ECG
graphs and converting them into grayscale images, while Makimoto et al. were able to train their model
directly from ECG images.''> Such differences indicate the need for further external validation, and
importantly, research groups adopting a universal training protocol to prevent any overfitting to specific

protocols and datasets.

In addition to ECGs, echocardiography is also a highly useful diagnostic tool for various cardiac
pathologies. Echocardiography can be used to determine any abnormalities in cardiac size and shape,
pumping strength via the ejection fraction, valvular disorders, cardiac muscle damage, congenital heart
defects, as well as many others.' As with ECGs, there is a potential for misinterpretation of
echocardiography images with inaccuracies up to 30% for transthoracic echocardiography (TTE). Using
deep learning algorithms could help reduce interpretation inaccuracies as well as reduce the time

required for echocardiogram interpretation. '8

In one study, Madani et al. developed CNN models for TTE analysis through videos and images using
over 250 echocardiograms, with the CNN model achieving an impressive overall accuracy of 97.8%.19
Additionally, analysis on single images provided an accuracy of 91.7%, significantly higher than the
accuracies of 70.2-84.0% achieved by board-certified echocardiographers.’® In a similar study, Naser

et al. trained two-dimensional and three-dimensional CNN models to classify cardiac views obtained
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from TTE.?® The two-dimensional CNN achieved an overall accuracy of 96.8%, while the three-
dimensional CNN had an overall accuracy of 96.3%.2° These high diagnostic values emphasize the
great potential for deep learning models to improve the diagnoses of cardiac diseases through

echocardiography.

While these outcomes for the interpretation of ECGs and echocardiography imaging are encouraging,
as indicated in Figure 1, several limitations hinder their widespread integration into daily clinical
practice. Many of the studies highlighting the ability of CNNs to assist in clinical decision making are
often trained on existing, retrospective datasets. Such datasets may be useful for initial training, but
CNNs must be trained with prospective data to account for the variability seen in real-world clinical
practice. Further, generalizability remains a critical issue, as models for both ECG and

echocardiography interpretation must perform similarly when presented with different, diverse data.2"

Al use for arrhythmia detection from wearable devices

Additionally, Al models are being integrated into wearable devices, such as smartwatches and smart
rings, to aid in the early detection of arrhythmias.??2 One of the most widely used features on these
wearables includes the detection of atrial fibrillation (AF), namely via smartwatches.?2 These devices
monitor heart rate (HR) and rhythm through either photoplethysmography (PPG) or a single-lead ECG,
or both, where the time intervals between heartbeats are calculated and various algorithms are used to
classify the heart rhythm.?2-23 PPG works by illuminating the skin with a light-emitting diode (LED) and
detecting the amount of light reflected, which varies according to changes in blood volume during the
cardiac cycle.23 A photodetector measures the intensity of the light reflected, building a pulse pressure
waveform, which is not only used to calculate HR, but importantly, the time between each heartbeat
corresponding to the R-R interval.?3 In AF, the pulse waveform is highly irregular, representing an
irregular R-R interval, notifying the user of suggestive AF through an irregular pulse notification (IPN),
which could be useful for paroxysmal AF.23-24 Nevertheless, this technology is only suggestive and
cannot confirm AF or other arrhythmias.?3 Devices capable of performing single-lead ECGs work by
using two metal plates to create one positive electrode (often located on the back of the watch) and one
negative electrode (often located on the digital crown), thereby allowing measurement of Lead 1.2
These devices can detect arrhythmias such as AF with more accuracy than those with only PPG
capacity.?2 However, the main limitation of performing an ECG using such wearables is that only a 1-
lead view is ever available.?* Ultimately, this means that any abnormalities that would be seen in other
leads are missed, and also increases the risk of artefacts such as poor sensor-skin contact and muscle

motion, which could prevent accurate ECG readings from being recorded.*

To address these concerns, several wearables now incorporate DL detection algorithms to increase the
accuracy of ECG recordings and PPG signals.?® These algorithms aid in noise reduction, normalization
of data and segmentation to increase the accuracy of PPG tachograms and ECG waveforms.23
Moreover, CNNs can be employed not only to categorize unprocessed data, but also to detect complex

patterns from PPG signals and spatial pattern recognition from ECG traces.?3 Such CNNs provide an
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additional advantage of detecting and analyzing dynamic changes throughout the day, allowing for

continuous, passive ECG monitoring, provided that enough data is stored by the wearable.?

Al use in intravascular imaging

In addition to Al use for non-invasive investigations, there is potential for Al in invasive imaging
modalities such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT), as
highlighted in Figure 1.25 Although both involve reconstructing images of intracoronary structures via a
catheter inserted into coronary arteries, IVUS uses ultrasound, while OCT uses low-coherence light.?
Additionally, IVUS offers deeper penetration of vessel walls (inclusive of adventitia) than OCT, making
IVUS a useful investigation for arteries with increased plaque burden, albeit the low-resolution images.26
In contrast, OCT provides high-resolution images compared to IVUS, offering greater detection rates of

thin-cap fibroadenoma (TCFA), arterial plaque rupture and stent malapposition.25-26

Currently, with OCT images, automation is primarily limited to the segmentation of atherosclerotic
plagues, where the quantification and characterization of any detected plaques are performed.2527
Similarly, with IVUS, DL algorithms can assist in feature extraction to increase the detection rates of
TCFA.25 However, interpretation of these intravascular images requires a clinician with extensive
training, and can be repetitive after reviewing several images.2® Implementing DL algorithms could help
to relieve experts of this repetitive task, and also allow real-time analysis of intravascular images.?®
Going further, researchers have developed neural networks for this task, such as the one developed by
Chu et al., where a neural network could automatically segment a single OCT frame in a remarkable
0.07 seconds.?528 Furthermore, pixel-based DL algorithms could allow for the incorporation of three-
dimensional spatial data and also the segmentation of individual plague components.25 This could allow

for more detailed and accurate identification of different plaques, aiding in clinical decision-making.2527

However, despite the potential benefits of using Al models for intravascular images, more research is
required before integration into mainstream clinical practice. As for Al use in ECG and
echocardiography interpretation, Al for IVUS and OCT still requires large annotated datasets to test
external validation on other datasets.?® Further, models must be tested on datasets encompassing the

wider population to ensure that they have similar performance in real-world clinical practice.?®

Al use in Gastroenterology: Augmenting disease detection from imaging-based investigations

With high-definition photographic visuals being a crucial component for procedures in gastroenterology,
the integration of CNNs into picture-based investigations could prove highly useful, as shown in Figure
1. Currently, colonoscopy and small-bowel capsule endoscopy (SB-CE) are some of the most popular

investigations to integrate Al models.29-30

Colonoscopy
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The integration of Al models into colonoscopies could be useful in identifying polyps. With current
estimates indicating that physicians can miss colorectal polyps in colonoscopy up to 28% of the time,

this type of Al could help to reduce the chances of missing such lesions.3"

One way that Al is being integrated into colonoscopy is through devices such as ‘Gl Genius’, a medical
device that is built on deep learning for computer aided diagnosis (CAD) and is approved for use in the
United States and the European Union.2® The usefulness of this device was tested in a large,
randomized multi-center trial where adenoma miss rate (AMR) was calculated for colonoscopies done
with or without Al to identify colorectal neoplasia, a risk factor for the development of colorectal cancer.??
Wallace et al. conducted this study in 2 groups, with 2 different arms, where in 1 group, colonoscopy
was done with Al-enabled (GI-Genius enabled), followed by colonoscopy without Al-enabled, and vice
versa in the other group.?® Using this design, Wallace et al. showed that AMR was significantly lower at
15.5% in the group with Al first, compared to 32.4% AMR in the group with colonoscopy first, which is
more than a 2-fold difference.?® With the necessary further studies, Al could be used in colonoscopy to

aid physicians, reducing the risk of missing colorectal polyps.

Capsule endoscopy

With the success of Al in detecting colorectal polyps, there is great potential to incorporate Al into

endoscopies, helping to increase accuracy and consistency in detecting gastrointestinal lesions .30

The introduction of capsule endoscopy (CE) provided a breakthrough for gastroenterologists to
investigate the small bowel in a non-invasive manner for conditions such as blood content, vascular
lesions, and inflammatory bowel diseases.®? Although CE is beneficial in diagnosing and managing
small bowel diseases, analyzing full-length CE videos with approximately 50,000 images can be a
tedious and time-consuming task.3? This can take between 30-120 minutes per video, leading to
physicians reviewing CE videos at a great pace, with a recent study reporting a CE miss rate of 11%
for all SB findings and 18.9% for single-mass lesions.3233 Using Al to aid specialists in reviewing CE

videos could help reduce the time taken and could improve the miss rate of SB lesions.3*

Ongoing research to implement Al systems into the analysis of SB-CE videos has shown promising
potential. Ding et al. developed a CNN model to aid in the detection of multiple SB conditions, including
ulcers, polyps, inflammation, vascular lesions, and lymphangiectasia through SB-CE.3* The CNN model
outperformed physicians with a higher sensitivity for per-patient analysis (99.88% vs 74.57%,
respectively) and per-lesion analysis (99.90% vs 76.89%, respectively).3* Additionally, the CNN model
achieved a substantially shorter reading time than the physicians (5.9 + 2.23 minutes vs 96.6 + 22.53
minutes, respectively).3* With a CNN reading time that is over 90 minutes less than conventional
reading, the use of the model in clinical practice could potentially save significant time when reviewing
SB-CE videos.
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Further, a study highlighted the use of a CNN model for the detection and classification of SB lesions
with hemorrhagic potential using CE images.3? Similar to the study conducted by Ding et al., the
researchers showed a high overall accuracy of 99%, sensitivity of 88%, and specificity of 99%.32.34
Crucially, in addition to identifying lesions, this CNN model could also classify lesions from CE images,
suggesting that such CNNs could soon have the capacity to classify other SB lesions.3? If introduced
into clinical practice, these CNNs could become key players for SB-CE analysis with minimal input from
physicians, thereby reducing their workload, and importantly, could address the physician miss rate of

SB lesions from CE.33

Nevertheless, in both studies, the researchers report several limitations, with the most important one
being that still frames were used as opposed to moving images.3234 In reality, SB-CE provides moving,
full-length videos, and further research is required to evaluate the true performance of these Al models
on full-length SB-CE videos, helping to assess generalizability. Additionally, these studies have
assessed the performance of CNNs on retrospective, existing data.323* Moving forward, as highlighted
by several researchers, prospective studies are necessary and are currently in progress to accurately

evaluate the true clinical benefit of these Al-based models in patient care.3*

Al use in Dermatology: Improving skin cancer detection

Using CNN models for image interpretation and pattern analysis can aid in recognizing skin conditions,

especially skin cancers, as outlined in Figure 1.3°

Researchers trained a CNN model using over 129,000 clinical images comprising over 2,000 skin
diseases to distinguish between melanocytic and keratinocytic lesions.35-3¢ The CNN model trained to
classify epidermal and keratinocytic lesions achieved an accuracy of over 91%, and performed on par
or even outperformed 21 board-certified dermatologists using clinical images.3® Furthermore, the ability
of the CNN model to classify melanomas using dermoscopic images, as opposed to clinical images,
was also matched to the accuracy levels of dermatologists.3® In another similar study from China,
researchers also demonstrated high diagnostic values for a novel CNN model to recognize certain skin
diseases from a dataset comprising 14 different categories of common cutaneous diseases.?” Similar
to research conducted by Esteva et al., this CNN also showed a high overall accuracy of 94.8%, with a
sensitivity of 93.4% and a specificity of 95.0%.37 Although in a separate test against 280 board-certified
dermatologists with 200 different images, the CNN and the dermatologists both had like-for-like figures
for average accuracy (92.75% vs 92.13%) and specificity (94.07% vs 95.50%), the sensitivity was
significantly higher compared to dermatologists (83.50% vs 68.51%).3” These figures again emphasize
the potential for the CNN model to perform at the same competency as dermatologists, and at times,

at higher levels.3”

The positive results of these trials suggest that Al could be used to classify skin cancers and even aid

dermatologists in reducing workload and providing diagnoses. Moreover, Esteva et al. denote that the

10
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ability of the CNN model to classify lesions using clinical images as opposed to widely used
dermoscopic images could be highly useful in introducing the technology to a smartphone app.3% With
the increasing use of smartphones across the world, such Al could be integrated into apps, providing
skin lesion classification from just a smartphone camera.35 This, in turn, could allow skin conditions,
such as cancers, to be detected and classified in primary care, thereby allowing general practitioners

to prioritize urgent or non-urgent referrals to dermatologists in secondary care.®®

Down the line, this could allow for improved management of these conditions, reducing the risk of
cancer development, and thereby providing a great public health benefit.3¢ In addition, prioritizing
appointments in this way would free up time for dermatologists, allowing them to use that time to
complete other tasks or see more patients, as seen in a recent pilot project where the Skin Analytics
Al-Powered Teledermatology was reviewed by the University Hospitals of Leicester NHS Trust in the
UK.32 This Al tool, known as DERM, which recently received conditional recommendation for use by
the National Institute for Health and Care Excellence (NICE), reviewed skin lesion images and classified
them as either “diagnosis of concern” or “benign”.3%-40 The project showed there was a reduction in the
NHS two-week wait referrals for cancers while freeing up 1,450 outpatient appointments, and achieving
a clinical time saving of 263 minutes per 100 patients.*' This pilot project showed promising results,
suggesting there could be several benefits from such Al-based technologies, provided that more
encouraging studies are carried out. Further real-world prospective studies are still required to evaluate
the true benefit in the clinic and address any potential challenges before this Al technology can be

introduced into clinical practice.®®

Al use in Ophthalmoloqy: Enhancing pathology detection from retinal imaging

Retinal imaging is used widely to diagnose several retinal pathologies, including diabetic retinopathy
(DR), glaucoma, and age-related macular degeneration (AMD).*2 To make a diagnosis, an
ophthalmologist is required to manually analyze and evaluate retinal fundus images, which is a time-
consuming process, as with other imaging-based investigations in other specialties.*> CNN models that
can automatically analyze fundus images and categorize the pathology can assist ophthalmologists in

making a diagnosis and point towards a management plan, as shown in Figure 1.

In a recent study, Pandey et al. trained an ensemble of 5 CNNs to recognize and classify retinal
pathologies into the following 4 categories: DR, glaucoma, AMD, and normal eyes from 100 unseen
fundus images.*? With the performance of the CNN directly compared to 7 board-certified
ophthalmologists, the CNN had a higher overall accuracy over all 4 categories, with a score of 79.2%,
while the doctors scored 72.7%.42 Furthermore, the CNN ensemble had a higher overall score for
correctly classifying images as DR, with a mean score of 76.8%, while the doctors had a mean score
of 57.5%.42 The remarkable difference of over 19% highlights the impressive accuracy of the CNNs,
which outperformed ophthalmologists.#? The CNN ensemble and ophthalmologists had similar

classification scores for the other 3 categories, which were not statistically significant. 42 These favorable

11
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results emphasize the great potential for using CNNs and other deep-learning algorithms to aid in the
detection of retinal pathologies.

Nevertheless, although Pandey et al. used unseen clinical images to train the CNN, using only 100
images is not representative of all the pathologies seen in the real world.*2 In clinical practice,
ophthalmologists often see a range of retinal diseases, more than the 4 conditions used in the study. 42
Furthermore, the images seen may not always be of high quality that CNNs can read with ease. Hence,
CNNss trained on a large variable dataset are needed to target generalizability and avoid overfitting to

one particular dataset, allowing them to be integrated for mainstream clinical use.

Al use in Radiology: Improving image interpretation and disease detection

The use of Al through CNNs has grown massively in radiology, with extensive research highlighting
recent advances in image interpretation. Radiological imaging is an essential aspect of medical care,
assisting clinicians in making crucial decisions in the management of a patient. Medical imaging
consists of various modalities, including X-ray, ultrasound, computed tomography (CT), magnetic
resonance imaging (MRI) and positron emission tomography (PET), which are central to various clinical
specialties.** Traditionally, radiologists manually analyze these images and provide a report for
clinicians to use in their decision-making process.*5 Extensive research has been carried out to evaluate
the use of Al models to automate the analysis of radiological images to an extent, saving time for

radiologists and potentially increasing accuracy.46

Research using CNNs for disease detection and classification has been promising, with prominent
advances highlighted in Figure 1. Several studies have shown that CNNs can be trained to recognize
certain patterns, shapes and contours in imaging to identify certain pathologies.*®> One meta-analysis
comprising 20 studies highlighted that DL models could identify intracranial aneurysms, with excellent
accuracy in detecting aneurysms more than 3 mm in size.*” More importantly, as highlighted by
Abdollahifard et al., using Al to assist clinicians with detecting intracranial aneurysms increased the
clinicians’ sensitivity by 12.8%.4” Carefully using such Al systems to support radiologists could lead to
better interpretation of medical imaging and increased accuracy. Going further, other studies detail the
use of Al models to detect and classify disease on imaging. Al models such as Brainiomix and
iSchemaView automatically complete the Alberta Stroke Program Early CT Score (ASPECTS) from
non-contrast CT scans (NCCT) for patients with an acute stroke.*® Grading using the ASPECTS system
can be difficult due to the subtlety of ischemic changes on NCCTs, with a variable interobserver
agreement, indicating that the grading of certain strokes may not always be unanimous.*8 Implementing
such Al-based software into clinical practice can help to enhance consistency and reduce diagnostic

uncertainty in medical imaging.

Additionally, CNNs could be widely utilized for image segmentation. Image segmentation is essentially

the division of a medical image into distinct regions that correspond to specific anatomical or

12
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pathological regions, helping to inform clinicians on potential diagnosis and treatment planning.4?
Traditional segmentation algorithms have been in place for several years, allowing radiologists to see
abnormalities in imaging. However, the performance of these segmentation methods is complicated by
complex medical images with unclear contours, ambiguous boundaries and variations in intensity,
leading to poor images.*® Implementing CNNs to automatically extract features from highly complex,
three-dimensional images to identify and outline pathological regions, and deliver superior performance
can go a long way in detecting lesions.*® One recent meta-analysis comprising nine studies highlights
the strong performance of CNNs in meningioma segmentation from MRI scans, with a pooled Dice
score of 89%.59 Notably, CNN models trained on multiple MRI sequences performed better than those
trained on single MRI sequences, emphasizing the need for high-quality datasets to develop robust and
clinically viable CNN models.®° Interestingly, the authors noted that the dataset size did not significantly
impact the accuracy of the CNN models, underlining that the quality of the dataset outweighs the
quantity of the data available. 5° However, the lack of performance differences could suggest possible

overfitting to the specific datasets used, which could ultimately limit generalizability .5

Concerns around generalizability are significant, limiting the widespread integration of such Al models
into clinical practice.5' Several CNN models have been developed to assist with diagnostic tasks, and
many excel with remarkable accuracy and performance. However, when implementing the same model
on a different dataset or another task with minor differences, effective generalization and similar
performance are not always seen.5! Similarly, the lack of numerous well-annotated datasets presents
a challenge in effectively training CNNs.?' Using large-sized, well-labeled datasets helps to train CNNs
to recognize complex patterns and features and also aids in reducing overfitting.52 However, these
annotations are only completed by radiologists, and being a significantly lengthy and tedious process
has contributed to the scarcity of well-labeled datasets.52 Using data augmentation techniques by
applying transformations can help not only to expand the dataset, but also to increase the diversity of
the existing data.5' This can help to train CNNs on a more robust dataset and avoid learning patterns

and features only from the original dataset, addressing generalizability.53

Al use in Surgery: Providing intraoperative assistance in robot-assisted surgery

Using the principles of image recognition and classification, CNN models could also be incorporated
into surgical techniques, allowing for improved patient outcomes, as shown in Figure 1. Several studies
described in this review have highlighted that Al can be useful in the detection and classification of
pathologies into different categories.32:3%42 This capability of CNN models can be useful for the pre-

operative assessment of a patient’s clinical condition, before proceeding with surgery.

There is great potential for integrating Al intraoperatively, though research is still emerging on this
aspect of Al integration into surgery. One example includes an ML-based model that can predict the
risk of developing hypoxemia, assisting anesthesiologists in anticipating such an event and proactively

intervening.5* Such Al tools can augment clinical decision-making during surgery, helping to improve

13
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patient safety.* Meanwhile, further research into intraoperative Al use has shown significant
advancements in robot-assisted surgery, with autonomous and semi-autonomous surgeries coming to
light due to the integration of algorithms and computer vision.5® In recent years, there have been
advances in orthopedics where specialists use robots such as the MAKO system for semi-autonomous
robotic-arm assisted total knee arthroplasty (RATKA).%¢ This system runs on complex pre-operative
planning through a computer program to map the joint in a three-dimensional view.?® From this, the
surgeon guides the robotic arm to operate within the pre-defined areas, reducing the chances of an
accident.®6-57 Moreover, a study highlights that RATKA can also lead to superior surgical precision and
better positioning of implants than manual surgical methods.5¢ These outcomes suggest that using such

robotic surgical systems could lead to better outcomes and greater quality of care.

Al models can also be used to improve visuals of the surgical field.® During surgery, electrocautery
devices are used for dissection and ligation of tissues, which subsequently creates smoke that can
obscure the surgical field temporarily.5® Wang et al. proposed a CNN model, linked to a Swin
transformer that can remove surgical smoke from the surgical footage in robotic surgery, improving
image quality and producing a smoke-free surgical view.5® Augmented reality (AR) surgery is another
surgical discipline that has the potential to enhance a surgeon’s capabilities by delivering real-time
information in the surgeon’s field of view to improve accuracy and safety.®° Differentiating between
native tissue and non-native surgical tools is a crucial challenge in AR for robotic surgery, which could
be addressed by CNN models as shown by De Backer et al.?% This DL model developed for AR-guided
robot-assisted kidney transplantation, achieved an impressive Dice score of 97.1% in correctly
identifying surgical instruments, suggesting that such models can be integrated into AR surgery.5®
Furthermore, studies highlight using CNN models to complete real-time robotic suturing.?® Saeidi et al.
developed a CNN model integrated into a robotic system, which could complete fully automated
laparoscopic bowel anastomoses.?86' Compared to manual laparoscopic surgery and traditional robot-
assisted surgery, the model showed superior consistency and accuracy when considering metrics such

as needle placement, suture placement and completion time.®"

Despite promising studies highlighting advances in using Al models in surgery, there has not been
enough research carried out to integrate such technologies into mainstream surgery confidently.
Applying Al to surgical fields can present a substantial challenge as surgical interventions rely heavily
on a surgeon’s practical skills, often in a high-risk, high-pressure, and highly dynamic operating
theatre.%2 Al systems have not reached this capability yet, and further studies exploring this critical issue
are pertinent. Moreover, training Al algorithms requires a large range of annotated surgical images
taken from real-time surgeries. The scarcity and difficulty in obtaining such data from surgical
environments present a further challenge, hindering the training of Al-based models.®? Accountability
remains a crucial issue that needs to be addressed to integrate Al-based surgical technologies into real-
world clinical practice.5® With the use of Al spanning from diagnosis, treatment planning, to robot-

assisted procedures, it can be difficult to determine who would be responsible if a negative patient
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outcome occurs.®® Further clinical research is necessary to address these limitations and integrate Al

into surgical fields safely and effectively.

Current challenges, emerging Al models and pathways to clinical integration

The existing literature has shown that there have been significant advancements in Al systems to assist
doctors, perhaps allowing for the provision of better care. However, one major limitation preventing the
integration of Al models into mainstream clinical practice is the “Al blackbox theory”.63 The theory stems
from the issue that although many Al models, such as CNNs, are shown to be highly effective in various
specialties, they perform tasks through highly complex computational layers, making interpretability
difficult.8* Essentially, this leads to situations where the rationale behind decisions and
recommendations from Al models cannot be explained, which is crucial for patient safety and clinician
trust.83 This also raises concerns about allocating responsibility if an Al system contributes to an
adverse patient outcome, especially if clinicians cannot explain Al recommendations.®> Furthermore,
the lack of explainability of “blackbox” models can lead to issues with transparency requirements set by

regulatory authorities when looking for integration into clinical practice.53:66

These issues have prompted research into Explainable Al (XAl), where Al models use tools such as
saliency maps or heatmaps to improve the interpretability of algorithms and how certain decisions are
reached.” These tools can improve Al models' interpretability and help reduce the “blackbox” nature.58
However, as highlighted by Ghassemi et al., not all XAl models provide clinically relevant
explanations.®® Some XAl methods, such as LIME and SHAP, generate rationales including heat maps
to explain decisions, but these lack medical causality and instead provide technical reasons.®
Moreover, significant XAl research has been done using retrospective studies, which do not test real-
world utility.®® Further research is required to develop transparent models that can give explanations
grounded in medical science and trained on real-world data to improve confidence among clinicians
and patients. Real-world, large-dataset prospective studies with such models are critical to validate their

clinical benefits and facilitate their integration into mainstream clinical practice.®

Another consideration is the recent emergence of open-source large language models (LLM) such as
DeepSeek, which has altered the clinical Al landscape.’”® Many other LLMs rely on expensive
application programming interfaces (API) or external cloud infrastructure, making it difficult for resource-
limited healthcare institutions to access Al technologies, potentially widening global health disparities.”®
71 DeepSeek, unlike other LLMs, enables local deployment, allowing institutions to run such LLMs on
their own network and has capabilities for continuous learning from publicly available open-source
datasets.”® This can allow adoption by healthcare institutions without the financial burden of costly APIs
or cloud subscriptions.” Moreover, DeepSeek supports offline deployment, avoiding the need to
transmit sensitive patient information through third-party servers, strengthening data security.” The
cost-saving and data privacy benefits have already led to over 90 Chinese tertiary hospitals adopting

DeepSeek for diagnostic image analysis, administrative tasks, and clinical decision support.’?

15
JMS



1JMS
. International Journal of Medical Students

Nevertheless, despite these advantages with models like DeepSeek, these LLMs must be thoroughly

investigated to ensure data privacy is intact and Al hallucinations do not lead to incorrect outcomes.”®

Despite several studies showing great potential for Al to assist clinicians in providing enhanced
healthcare, it is also paramount that other ethical considerations of using Al technology are not
overlooked.” While using Al to process sensitive patient data can be beneficial, it is important to ensure
that there are robust data protection measures to protect patient information.” Additionally, using Al to
aid in the decision-making process should also be balanced with important input from clinicians.”®
Crucially, Al must explicitly serve as a tool to enhance the decision-making process, rather than replace
human judgment.”" Using clinician expertise to identify errors made by Al and considering patient
preferences should be of the utmost priority to provide the best patient-centered care.” Moving forward,
further ethical considerations should be taken into account to make the most of Al in clinical practice,

while maintaining the highest ethical standards.
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LIMITATIONS OF THIS NARRATIVE REVIEW

The fact that this paper is a narrative review poses a limitation, as there was no quantitative question
being addressed. Nevertheless, the literature was reviewed and summarized using the SANRA
guidelines to effectively address the qualitative research question outlined in the introduction.
Additionally, the uses of Al were not covered in every medical and surgical specialty, as there would be
too much toinclude in one narrative review. The specialties that had major developments were selected,

and key Al advances were covered in this review.
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DECLARATION OF Al USE

Al was solely used in the initial stages of this narrative review to only gain a general understanding
and overview of the current research trends in the uses of Al for each of the specialties covered. Al
was not used at any point to synthesize or write up material from research. All content is original and

was written without plagiarism.
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SUMMARY - ACCELERATING TRANSLATION

Artificial intelligence (Al) is currently being used in several sectors around the world to automate tasks.
Clinical medicine is one field where Al can be beneficial to automate tasks, with several studies
demonstrating that Al models can carry out tasks with impressive accuracy and efficiency. The main
aim of this article is to evaluate the recent advances and applications of various types of Al models in
different clinical specialties. Research was carried out through analysis of numerous peer-reviewed

articles taken from online medical research databases, such as PubMed.

The research showed increasing evidence of Al models, such as convolutional neural networks (CNN),
having the capacity to carry out complex tasks to aid physicians in their clinical decision-making across
several specialties. CNNs, a type of deep learning (DL) model, can inherently recognize and classify
patterns, making them great candidates for use in diagnostic investigations. In cardiology, several
researchers showed the potential for CNNs to aid clinicians through automated analysis of
electrocardiograms (ECGs) and echocardiography, allowing for recognition of various pathologies.
Furthermore, DL algorithms can be applied to wearable devices, such as smartwatches, allowing them
to passively monitor for arrhythmias with precision, which could be useful for clinicians to review if widely
adopted. Other research also shows the potential for Al models to assist in complex intravascular
imaging by recognizing image components with more accuracy, allowing for greater detection of cardiac
arterial pathologies. In gastroenterology, greater detection rates of abnormal growths and other
pathologies through CNN-based colonoscopy could lead to earlier identification of colorectal cancers.
Similarly, CNNs can be useful in analyzing captured footage from capsule endoscopy, where a small
camera attached to a pill is swallowed to take pictures and videos of the small intestine. This analysis
is a typically time-consuming task for physicians, and CNNs could help by detecting abnormalities at a
much greater pace and accuracy. Comparably, the same principle applies in ophthalmology, where
CNNs could be used to evaluate retinal images, aiding ophthalmologists in detecting more pathologies

of the eye.

In dermatology, research shows that CNNs can aid in recognizing skin cancers from clinical images
with ease and accuracy, allowing for earlier detection rates. Moreover, recent studies show the
integration of CNNs into software to detect and analyze images taken from a smartphone camera,
allowing the expansion and revolution of teledermatology. Radiology is one field where the use of Al
models is substantial and could be greatly beneficial. As with intravascular imaging, CNNs and other Al
models could help radiologists in analyzing shapes and contours with more precision, allowing for better
detection and classification of pathologies from imaging. These same principles could aid in surgical
techniques and robot-assisted surgery, where Al models view and analyze the surgical field before the
surgery is commenced, assisting with the surgeon’s precision. Furthermore, Al models could help to
provide a clear view for the surgeon in augmented reality (AR) surgery, allowing for improved accuracy

and safety. Remarkable studies have also shown that robotic surgery equipped with Al models can
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complete automated suturing, providing higher accuracy and consistency than traditional surgical

techniques.

Recently, there has also been the introduction of large language models (LLMs) which can provide
quick support and analysis for administrative tasks, diagnostic imaging and clinical decision support.
Models such as DeepSeek can also run offline or on institutions’ own networks, which provides a
substantial financial benefit for resource-limited institutions and hospitals where expensive online
services cannot be afforded. Nevertheless, despite the added advantage of these LLMs, further

extensive research must be done to ensure that there are robust data protection measures.

Despite researchers showing the great potential for Al to be used in clinical practice, several challenges
and concerns still exist that are preventing widespread clinical integration. The most significant limitation
is the “Al blackbox theory”, where the reasoning behind certain Al responses and decisions cannot be
explained. This raises concerns around patient safety and clinician trust, and allocating responsibility if
Al contributes to an adverse patient outcome. Although efforts have been made to introduce explainable
Al (XAl) models, these are still not enough, as XAl models do not always provide medical rationale
behind clinical recommendations. Furthermore, concerns remain around generalizability and external
validation, where Al models do not have similar performance with different datasets. Additionally, many
studies assessing Al models have been carried out on existing retrospective datasets. More research
needs to be focused on real-time, large-dataset, diverse prospective studies with transparent Al models,
where patient data and outcomes need to be followed to validate their true clinical benefit and facilitate

mainstream clinical adoption.
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CONCLUSION

Integrating Al into the clinical setting can revolutionize healthcare in countless ways with recent studies
showing encouraging results. The reviewed literature for this article has demonstrated a massive
potential for the use of Al in several specialties that could lead to better patient care. There has been
extensive research into the applications of Al in medicine and surgery, namely through the integration
of deep learning algorithms with some systems using computer vision. Medically, researchers have
achieved encouraging results in developing CNN models to detect, recognize, and classify clinical
images to aid physicians in various disciplines and specialties. Surgical studies have highlighted using
Al models in robot-assisted surgery to guide surgeons, helping to enhance accuracy and reduce the
risk of complications, leading to better outcomes. However, despite these studies, more research is
required to move ahead and implement Al into everyday clinical care, as many developed CNN models
are still being tested on existing data from retrospective studies. Other prominent limitations in existing
research include the development of “blackbox” models that lack interpretability, and limited models
assessed on generalizability and external validation. Long-term, real-world prospective studies
comprising diverse datasets are imperative to assess the true clinical benefits and address any potential

drawbacks and limitations before Al can be introduced into mainstream clinical practice.
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Figure 1. Overview of the Applications of Al Models Across Various Specialties in Medicine and

Surgery.
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Figure 1. The diagram highlights various applications of artificial intelligence (Al) models in several
clinical specialties in medicine and surgery, as discussed in this article.
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