A Cross-Sectional Study of p66Shc Gene Expression in Liquid Biopsy of Diabetic Patients. Is it Possible to Predict the Onset of Renal Disease?

Authors

DOI:

https://doi.org/10.5195/ijms.2022.1306

Keywords:

Diabetes Mellitus, P66Shc, Biomarker, Liquid Biopsy.

Abstract

Background: Diabetic nephropathy (DN) is a disorder affecting glomerular function that, histologically, is due to the presence of glomerulosclerosis accompanied with endothelial dysfunction of the afferent and efferent renal arterioles. Insulin resistance in diabetic patients is known to be one of the causes of endothelial dysfunction because it increases oxidative stress, and one of the main genes regulating the production pathways of reactive oxygen species is p66Shc. The aim of this study was to evaluate the p66Shc gene expression as a precocious biomarker of renal dysfunction in diabetic patients, using liquids samples of urine sediment and peripheral blood.

Methods: 29 diabetic patients and 37 healthy donors were recruited from the Centro Universitário FMABC outpatient clinic. The RT-gPCR technique was applied to evaluate p66Shc gene expression in urine and peripheral blood samples from diabetic patients, which were compared with healthy donors.

Results: There was no significant expression of p66Shc gene in samples from diabetic patients compared with healthy donors. However, p66Shc expression in the blood samples of diabetics (0.02417±0.078652-ΔCT, n=29) was 3.6 times higher than in healthy participants (0.00689±0.01758, n=37) while in the urine samples, it was 1.48 times higher in diabetics group (0.02761±0.05412-ΔCT) than in CTL group (0.0186±0.02199).

Conclusion: There was no significant p66Shc gene expression in peripheral blood and urine samples of diabetic patients without kidney injury compared with healthy donors, although there is a tendency for this gene to participate in the oxidative imbalance present in diabetes.

Metrics

Metrics Loading ...

References

de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2014;37(10):2843-63. DOI: https://doi.org/10.2337/dc14-1720

Maraschin JeF. Classification of diabetes. Adv Exp Med Biol. 2012;771:12-9. DOI: https://doi.org/10.1007/978-1-4614-5441-0_2

Li YR, Tsai SS, Lin YS, Chung CM, Chen ST, Sun JH, et al. Moderate- to high-intensity statins for secondary prevention in patients with type 2 diabetes mellitus on dialysis after acute myocardial infarction. Diabetol Metab Syndr. 2017;9:71. DOI: https://doi.org/10.1186/s13098-017-0272-7

Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001;44 Suppl 2:S14-21. DOI: https://doi.org/10.1007/PL00002934

Selby JV, FitzSimmons SC, Newman JM, Katz PP, Sepe S, Showstack J. The natural history and epidemiology of diabetic nephropathy. Implications for prevention and control. JAMA. 1990;263(14):1954-60. DOI: https://doi.org/10.1001/jama.263.14.1954

Ma J, Wu H, Zhao CY, Panchapakesan U, Pollock C, Chadban SJ. Requirement for TLR2 in the development of albuminuria, inflammation and fibrosis in experimental diabetic nephropathy. Int J Clin Exp Pathol. 2014;7(2):481-95.

Romero-Aroca P. Targeting the pathophysiology of diabetic macular edema. Diabetes Care. 2010;33(11):2484-5. DOI: https://doi.org/10.2337/dc10-1580

Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17-28. DOI: https://doi.org/10.1038/ki.2010.483

Nacci C, Tarquinio M, Montagnani M. Molecular and clinical aspects of endothelial dysfunction in diabetes. Intern Emerg Med. 2009;4(2):107-16. DOI: https://doi.org/10.1007/s11739-009-0234-7

Murkamilov IT, Sabirov IS, Fomin VV, Yusupov FA. [Endothelial dysfunction and arterial wall stiffness: New targets in diabetic nephropathy]. Ter Arkh. 2017;89(10):87-94. DOI: https://doi.org/10.17116/terarkh2017891087-94

Fadini GP, Albiero M, Menegazzo L, Boscaro E, Pagnin E, Iori E, et al. The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes. 2010;59(9):2306-14. DOI: https://doi.org/10.2337/db09-1727

Magenta A, Greco S, Capogrossi MC, Gaetano C, Martelli F. Nitric oxide, oxidative stress, and p66Shc interplay in diabetic endothelial dysfunction. Biomed Res Int. 2014;2014:193095. DOI: https://doi.org/10.1155/2014/193095

Poulet G, Massias J, Taly V. Liquid Biopsy: General Concepts. Acta Cytol. 2019;63(6):449-55. DOI: https://doi.org/10.1159/000499337

Alix-Panabières C, Pantel K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov. 2016;6(5):479-91. DOI: https://doi.org/10.1158/2159-8290.CD-15-1483

Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease - latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409-24. DOI: https://doi.org/10.1038/s41571-019-0187-3

Pan HZ, Zhang L, Guo MY, Sui H, Li H, Wu WH, et al. The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol. 2010;47 Suppl 1:71-6. DOI: https://doi.org/10.1007/s00592-009-0128-1

Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018;10:1758835918794630. DOI: https://doi.org/10.1177/1758835918794630

Kim SS, Song SH, Kim IJ, Jeon YK, Kim BH, Kwak IS, et al. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36(3):656-61. DOI: https://doi.org/10.2337/dc12-0849

Grimaldi V, Vietri MT, Schiano C, Picascia A, De Pascale MR, Fiorito C, et al. Epigenetic reprogramming in atherosclerosis. Curr Atheroscler Rep. 2015;17(2):476. DOI: https://doi.org/10.1007/s11883-014-0476-3

Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB, et al. Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res. 2011;92(3):466-75. DOI: https://doi.org/10.1093/cvr/cvr250

Xiao Y, Xia J, Cheng J, Huang H, Zhou Y, Yang X, et al. Inhibition of S-Adenosylhomocysteine Hydrolase Induces Endothelial Dysfunction via Epigenetic Regulation of p66shc-Mediated Oxidative Stress Pathway. Circulation. 2019;139(19):2260-77. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.036336

Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, et al. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A. 2007;104(12):5217-22. DOI: https://doi.org/10.1073/pnas.0609656104

Menini S, Iacobini C, Ricci C, Oddi G, Pesce C, Pugliese F, et al. Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation. Diabetologia. 2007;50(9):1997-2007. DOI: https://doi.org/10.1007/s00125-007-0728-7

Menini S, Amadio L, Oddi G, Ricci C, Pesce C, Pugliese F, et al. Erratum. Deletion of p66. Diabetes. 2018;67(1):165. DOI: https://doi.org/10.2337/db18-er01a

Zaccagnini G, Martelli F, Fasanaro P, Magenta A, Gaetano C, Di Carlo A, et al. p66ShcA modulates tissue response to hindlimb ischemia. Circulation. 2004;109(23):2917-23. DOI: https://doi.org/10.1161/01.CIR.0000129309.58874.0F

Naldini A, Morena E, Pucci A, Pellegrini M, Baldari CT, Pelicci PG, et al. The adaptor protein p66Shc is a positive regulator in the angiogenic response induced by hypoxic T cells. J Leukoc Biol. 2010;87(3):365-9. DOI: https://doi.org/10.1189/jlb.0709460

Xu X, Zhu X, Ma M, Han Y, Hu C, Yuan S, et al. p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Sci Rep. 2016;6:29302. DOI: https://doi.org/10.1038/srep29302

Veiga G, Alves B, Perez M, et al. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy. J Clin Pathol. 2020;73(11):713-721. DOI: https://doi.org/10.1136/jclinpath-2020-206494

Matsubara T, Araki M, Abe H, Ueda O, Jishage K, Mima A, et al. Bone Morphogenetic Protein 4 and Smad1 Mediate Extracellular Matrix Production in the Development of Diabetic Nephropathy. Diabetes. 2015;64(8):2978-90. DOI: https://doi.org/10.2337/db14-0893

Published

2022-12-31 — Updated on 2023-02-20

How to Cite

P. Simões, D., Moreira Perez, M., Aguiar Alves, B. da C., Araújo Encinas, J. F., Santos Raimundo, J. R., Costas Arcia, C. G., Lopes Mathia, V., Sacchi Mendonça, M. I., Mesiano Maifrino, L. B., Murad, N., Affonso Fonseca, F. L., & Luciano da Veiga, G. (2023). A Cross-Sectional Study of p66Shc Gene Expression in Liquid Biopsy of Diabetic Patients. Is it Possible to Predict the Onset of Renal Disease?. International Journal of Medical Students, 10(4), 387–394. https://doi.org/10.5195/ijms.2022.1306

Issue

Section

Original Article

Categories