Fibroblast Growth Factor (FGF) Receptor Mutations: A Pathway to Understanding Multigenic Risk in Disease?

Authors

  • Stuart J. Mires University of Oxford, Oxford, England, UK

DOI:

https://doi.org/10.5195/ijms.2013.219

Keywords:

Fibroblast Growth Factors, Acrocephalosyndactylia, Craniosynostoses, Germ-Line Mutation

Abstract

Fibroblast growth factor receptor (FGFR) gain-of-function mutations form the pathogenic basis of multiple congenital pathologies. A pioneering body of work over the past two decades has established that a unique mutation selection process within the testis likely underlies the paternal age effect characteristics of such diseases. This mechanism, analogous to positive selection of mutations promo­ting proliferation in tumorigenesis, sparked interest in mutation profiling of testicular and other cancers. The resulting discovery of FGFR gain-of-function mutations akin to those of congenital syndromes has enabled a novel hypothesis to be born: that mutations represent a spectrum of activation. As such, FGFR gain-of-function mutations could be pathogenic not solely in defined monogenic syndromes but within myriad disease processes with ‘low activation’ conferring increased disease risk. Do such mutations contribute to multigenic risk in multiple pathologies? This review evaluates this hypothesis, alluding to the plausible clinical implications that ensue.

Metrics

Metrics Loading ...

Author Biography

Stuart J. Mires, University of Oxford, Oxford, England, UK

Stuart J. Mires is a 5th year medical student at the University of Oxford, Oxford, England, UK.

References

1. Webster MK, Donoghue DJ. FGFR activation in skeletal disorders: Too much of a good thing. Trends Genet. 1997;13(5):178-82.
2. Bonaventure J, El Ghouzzi V. Molecular and cellular bases of syndromic craniosynostoses. Expert Rev Mol Med. 2003;5(4):1-17.
3. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9(2):165-72.
4. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci U S A. 2001;98(13):7182-7.
5. Moloney DM, Slaney SF, Oldridge M, Wall SA, Sahlin P, Stenman G, et al. Exclusive paternal origin of new mutations in Apert syndrome. Nat Genet. 1996;13(1):48-53.
6. Goriely A, McVean GAT, Röjmyr M, Ingemarsson B, Wilkie AOM. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science. 2003;301(5633):643-6.
7. Goriely A, McVean GAT, Van Pelt AMM, O’Rourke AW, Wall SA, De Rooij DG, et al. Gain-of-function amino acid substitutions drive positive selec¬tion of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci U S A. 2005;102(17):6051-6.
8. Nakagawa T, Nabeshima Yi, Yoshida S. Functional Identification of the Ac¬tual and Potential Stem Cell Compartments in Mouse Spermatogenesis. Dev Cell. 2007;12(2):195-206.
9. Qin J, Calabrese P, Tiemann-Boege I, Shinde DN, Yoon SR, Gelfand D, et al. The molecular anatomy of spontaneous germline mutations in human testes. PLoS Biol. 2007;5(9):1912-22.
10. Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet. 2007;39(9):1145-50.
11. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995;9(9):726-35.
12. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139-49.
13. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158-62.
14. Dutt A, Salvesen HB, Chen TH, Ramos AH, Onofrio RC, Hatton C, et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci U S A. 2008;105(25):8713-7.
15. Goriely A, Hansen RMS, Taylor IB, Olesen IA, Jacobsen GK, McGowan SJ, et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet. 2009;41(11):1247-52.
16. Wilkie AOM. Bad bones, absent smell, selfish testes: The pleiotropic con¬sequences of human FGF receptor mutations. Cytokine Growth Factor Rev. 2005;16(2):187-203.
17. Melnik BC, Vakilzadeh F, Aslanidis C, Schmitz G. Unilateral segmental ac¬neiform naevus: A model disorder towards understanding fibroblast growth factor receptor 2 function in acne? Br J Dermatol. 2008;158(6):1397-9.
18. Meyer KB, Maia AT, O’Reilly M, Teschendorff AE, Chin SF, Caldas C, et al. Allele-specific up-regulation of FGFR2 increases susceptibility to breast can-cer. PLoS Biol. 2008;6(5):1098-103.
19. Dutra RL, de Carvalho MB, Santos Md, Mercante AMdC, Gazito D, de Cicco R, et al. FGFR4 Profile as a Prognostic Marker in Squamous Cell Carcinoma of the Mouth and Oropharynx. PLoS ONE. 2012;7(11):e50747.

Published

2013-12-31

How to Cite

Mires, S. J. (2013). Fibroblast Growth Factor (FGF) Receptor Mutations: A Pathway to Understanding Multigenic Risk in Disease?. International Journal of Medical Students, 1(3), 123–127. https://doi.org/10.5195/ijms.2013.219

Issue

Section

Review

Categories