Comparative Review of Large Animal Models for Suitability of Proximal Aortic Endovascular Repair
DOI:
https://doi.org/10.5195/ijms.2022.763Keywords:
Aortic dissection, Endovascular, Ascending aorta, Animal modelsAbstract
The advent of thoracic endovascular aortic repair (TEVAR) heralds a paradigm shift in treating descending aortopathies. TEVAR is viewed as a potential option for ascending aortic dissection (AD) repair. Currently, TEVAR’s use in treating ascending aortopathies remains limited. Appropriate animal models are urgently needed to improve our understanding of the endovascular treatment of ascending ADs, also known as Stanford Type-A ADs. This narrative review provides a current literature summary on the subject, including the gross anatomical differences among adult porcine, ovine, and bovine species, compared with those of their human counterparts, as well as specific valvular and coronary vasculature measurement variances. An electronic search of Cochrane Library, PubMed, and Ovid Medline databases from January 1965 to June 2020 was performed. The search was limited to articles published in English. Twenty-three research papers were included in this review. Our findings revealed that whereas macroscopic anatomy remains grossly similar among these species, differences in valvular leaflet shape are present, with porcine and ovine models possessing anatomic characteristics that are comparable to their human counterparts. Inter-species differences concerning the anatomy of the ascending aorta have not been extensively studied, highlighting a literature gap. Conversely, multiple morphological studies have highlighted that porcine coronary vasculature is similar to that of humans. In conclusion, both porcine and ovine species are suitable as appropriate animal models for examining the feasibility of endovascular stent-grafts for ascending ADs. However, given the similarities in coronary and aortic valve anatomy with humans, porcine models are better suited for this purpose.
Metrics
References
Cesarovic N, Lipiski M, Falk V, Emmert M. Animals in cardiovascular research: Clinical relevance and translational limitations of animal models in cardiovascular medicine. EHJ. 2020;41(2):200-3.
Criado F. Aortic Dissection: A 250-Year Perspective. Tex Heart Inst J. 2011; 8(6):694-700.
Fujimura N, Kawaguchi S, Obara H, Yoshitake A, Inoue M, Otsubo S et al. Anatomic Feasibility of Next-Generation Stent Grafts for the Management of Type A Aortic Dissection in Japanese Patients. Circ J. 2017;81:1388–94.
Chiu P, Miller DC. Evolution of surgical therapy for Stanford acute type A aortic dissection. Ann Cardiothorac Surg. 2016;5(4):275-95.
Scholl F, Coady M, Davies R. Interval or Permanent Nonoperative Management of Acute Type A Aortic Dissection. JAMA Surgery. 1999; 134(4):402-6.
Auer J, Berent R, Eber B. Aortic Dissection: Incidence, Natural History and Impact of Surgery. Journal of Clinical and Basic Cardiology. 2000;3(3),151-4.
Fann JI, Smith JA, Miller DC, et al. Surgical management of aortic dissection during a 30-year period. Circulation 1995;92(2):113.
Becker H, Jauch K. Vascular Surgery. 1st Edition. Berlin: Springer-Verlag; 1989. p. 349-60
Shah A, Khoynezhad A. Thoracic endovascular repair for acute type A aortic dissection: operative technique. Ann Cardiothorac Surg. 2016;5(4):389-96.
Kreibich M, Rylski B, Kondov S, Morlock J, Scheumann J, Kari F et al. Endovascular treatment of acute Type A aortic dissection—the Endo Bentall approach. J Vis Surg. 2018;1(4):69.
Heilmann C, Stahl R, Schneider C, Sukhodolya T, Siepe M, Olschewski M et al. Wound complications after median sternotomy: a single-centre study. Interact Cardiovasc Thorac Surg. 2013;16(5):643-8.
Luciani G, Lucchese G. Minimal-access median sternotomy for aortic valve replacement. J Thorac Dis. 2013;5(Suppl 6):S650–3.
Sarkar M, Prabhu V. Basics of cardiopulmonary bypass. Indian J Anaesth. 2017;61(9):760–7.
Zanotti G, Reece TB, Aftab M. Aortic Arch Pathology: Surgical Options for the Aortic Arch Replacement. Cardiol Clin. 2017;35(3):367-85.
Nordon IM, Hinchliffe RJ, Morgan R, Loftus IM, Jahangiri M, Thompson MM. Progress in endovascular management of type A dissection. Eur J Vasc Endovasc Surg. 2012;44(4):406-10.
Kreibich M, Soekeland T, Beyersdorf F, Bavaria J, Schröfel H, Czerny M et al. Anatomic feasibility of an endovascular valve–carrying conduit for the treatment of type A aortic dissection. J Thorac Cardiovasc Surg. 2019;157(1):26-34.e1.
Harky A, Al-Adhami A. Stenting in type A aortic dissection: fantasy or reality? J Vis Surg. 2018;4(161):1-3.
Mangialardi N, Serrao E, Ronchey S, Kasemi H, Orico M. Endovascular Treatment of Type A Dissections. Endovascular Today. 2013 Nov. Available from: https://evtoday.com/articles/2013-nov/endovascular-treatment-of-type-a-dissections
University of Minnesota. Comparative Anatomy of the Valves. Available from: http://www.vhlab.umn.edu/atlas/comparative-anatomy-tutorial/external-anatomy.shtml. Last updated [Jan 14,2019]; cited [Jan 20,2020].
Sands M, Rittenhouse E, Mohri H, Merendino K. An Anatomical Comparison of Human, Pig, Calf, and Sheep Aortic Valves. Ann Thorac Surg. 1969;8(5):407-14.
University of Minnesota. Comparative Anatomy of the Valves. Available from: http://www.vhlab.umn.edu/atlas/comparative-anatomy-tutorial/valves.shtml. Last updated Jan 14,2019; cited Jan 20,2020.
Wang C, Lachat M, Regar E, von Segesser L, Maisano F, Ferrari E. Suitability of the porcine aortic model for transcatheter aortic root repair. Interact Cardiovasc Thorac Surg. 2017;26(6):1002-8.
Tao L, Xianhao B, Yuxi Z, Ziwen L, Ziyi X, Zhaoxiang Z et al. Thoracic aortic computed tomography angiography in porcine: establishment of a baseline for endovascular evaluation of the ascending aorta. Interact Cardiovasc Thorac Surg. 2020:31(2):248-53
Khan S, Islam M. Studies on the Prospect of Bioprostheses by Bovine Aortic Valve for Human Use. Bangladesh Med Res Counc Bull. 1991;17(2):75-80
Hyun Joh J, Ahn H, Park H. Reference Diameters of the Abdominal Aorta and Iliac Arteries in the Korean Population. Yonsei Med J. 2013;54(1):48-54.
Jonker F, Mojibian H, Schlösser F, Botta D, Indes J, Moll F et al. The Impact of Hypovolaemic Shock on the Aortic Diameter in a Porcine Model. Eur J Vasc Endovasc Surg. 2010;40(1):564-71.
DiVincenti L, Westcott R, Lee C. Sheep (Ovis aries) as a Model for Cardiovascular Surgery and Management before, during, and after Cardiopulmonary Bypass J Am Assoc Lab Anim Sci. 2014;53(5):439-48.
Dumfarth J, Chou A, Ziganshin B, Bhandari R, Peterss S, Tranquilli M et al. Atypical aortic arch branching variants: A novel marker for thoracic aortic disease. J Thorac Cardiovasc Surg. 2015;149(6):1586-92.
Layton K, Kallmes D, Cloft H, Lindell E, Cox V. Bovine Aortic Arch Variant in Humans: Clarification of a Common Misnomer. AJNR Am J Neuroradiol. 2006;27(7):1541-2.
Torad F, Amer M, Shamaa A, Elsherpieny E. Echocardiographic measurements and indices in normal adult buffalo (Bubalus bubalis). Journal of Applied Animal Research. 2016;45(1):336-41.
Devereux R, Simone G, Arnett D, Best L, Boerwinkle E, Howard B et al. Normal Limits in Relation to Age, Body Size and Gender of Two- Dimensional Echocardiographic Aortic Root Dimensions in Persons ?15 Years of Age. Am J Cardiol. 2012;110(8):1189-94.
Braun U, Schweizer T. Determination of Heart Dimensions in Cattle via 2-D-mode Echocardiography. Berl Munch Tierarztl Wochenschr. 2001;114(2):46-50.
Sahni D, Kaur G, Jit H, Jit I. Anatomy & Distribution of Coronary Arteries in Pig in Comparison With Man. Indian J Med Res. 2008;127(6):564-70/
Weaver M, Pantely G, Bristow J, Ladley H. A Quantitative Study of the Anatomy and Distribution of Coronary Arteries in Porcine in Comparison With Other Animals and Man. Cardiovasc Res. 1986;20(12):907-17.
Gómez F, Ballesteros L. Evaluation of coronary dominance in pigs; a comparative study with findings in human hearts. Arq. Bras. Med. Vet. Zootec. 2015;67(3):783-9.
Frink R, Merrick B. The Sheep Heart: Coronary and Conduction System Anatomy With Special Reference to the Presence of an Os Cordis. Anat Rec. 1974;179(2):189-200.
Scansen B. Coronary Artery Anomalies in Animals. Vet. Sci. 2017;4(2):20.
Barszcz K, Polguj M, Kle?kowska-Nawrot J, Go?dziewska-Har?ajczuk K, Olbrych K, Czopowicz M. Morphometry and topography of the coronary ostia in the European bison. Folia Morphol. 2019;79(1):105-12.
Gómez F, Cortés L, Ballesteros L. Morphological characterisation of the coronary arteries in African sheep (Ovis orientalis). Differential analysis with those of humans and other animal species. Folia Morphol. 2018;78(1):63-70.
Pham T, Martin C, Elefteriades J, Sun W. Biomechanical characterisation of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch. Acta Biomater. 2013;9(8):7927-36.
Ho S. Structure and anatomy of the aortic root. Eur J Echocardiogr. 2009;10(1):3-10
Published
Versions
- 2022-07-12 (3)
- 2022-06-30 (2)
How to Cite
Issue
Section
License
Copyright (c) 2022 Abhishekh Srinivas, Ming Yii, Julian A. Smith
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site; with the understanding that the above condition can be waived with permission from the Author and that where the Work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from the Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Enforcement of copyright
The IJMS takes the protection of copyright very seriously.
If the IJMS discovers that you have used its copyright materials in contravention of the license above, the IJMS may bring legal proceedings against you seeking reparation and an injunction to stop you using those materials. You could also be ordered to pay legal costs.
If you become aware of any use of the IJMS' copyright materials that contravenes or may contravene the license above, please report this by email to contact@ijms.org
Infringing material
If you become aware of any material on the website that you believe infringes your or any other person's copyright, please report this by email to contact@ijms.org